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ARTICLE

A new late Paleocene phenacodontid 'condylarth' Lophocion from the Clark’s Fork
Basin of Wyoming
Bin Bai a,b, Yuan-Qing Wang a,b,c and Jin Meng a,b,d,e
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of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China; dDivision of Paleontology, American Museum of Natural
History, New York, NY, USA; eEarth and Environmental Sciences, Graduate Center, City University of New York, New York, NY, USA

ABSTRACT
Phenacodontidae are a group of archaic ungulates in the early Paleogene and are considered to play an
important role in the origin of some other ungulates, including perissodactyls. The early Eocene
Lophocion asiaticus, the only unequivocal phenacodontid from Asia, is most closely related to North
American Ectocion and probably closer to perissodactyls than is the latter, as evidenced by its more
lophodont teeth. Here we named a new species of Lophocion, L. grangeri sp. nov., from the latest
Paleocene (Clarkforkian 3) deposit in the Clark’s Fork Basin of Wyoming. Although the holotype of the
new species is only known by a right maxilla with P4-M2, its degree of lophodonty is similar to that of
Lophocion but diverges from Ectocion in having the incipient protoloph and metaloph on upper molars.
In dental morphology, Lophocion grangeri is somewhat intermediate between Ectocion and L. asiaticus,
and probably gave rise to the latter during the Paleocene-Eocene transition. Both Lophocion and
Ectocion are included in Phenacodontinae rather than Meniscotheriinae, but their phylogenetic relation-
ship with other ungulates still remains obscure.
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Introduction

The paraphyletic ‘condylarths’ are a group of archaic ungulates,
and consist of seven families (Rose 2006; Halliday et al. 2017).
Phenacodontid ‘condylarths’ are distributed mainly in North
America, temporally ranging from the late early Paleocene to
early middle Eocene (Lofgren et al. 2004). Phenacodontids have
been considered as to be ancestral to perissodactyls (Radinsky
1966), or closely related to the clade Altungulata that includes
tethytheres, hyracoids, and perissodactyls (Prothero et al. 1988;
Thewissen and Domning 1992; Gheerbrant et al. 2005;
Kondrashov and Lucas 2012). However, phylogenetic analyses
based on molecular and/or morphologic data suggest a deep
split of Afrotheria and Laurasiatheria, with phenacodontids
being allied with either of them (Asher 2007; Murphy et al.
2001; O’Leary et al. 2013; Gheerbrant et al. 2016; Halliday et al.
2017). Perissodactyls were further considered closely related to
either cambaytheres from Indian subcontinent (Cooper et al.
2014; Rose et al. 2014) or to South American ungulates (Welker
et al. 2015; Westbury et al. 2017).

The family Phenacodontidae is traditionally composed of
Tetraclaenodon, Phenacodus, Ectocion, and Copecion, and
species of the family are common in the Paleocene and
lower Eocene deposits of North America (West 1976;
Thewissen 1990). Meniscotherium with selenodont–lopho-
dont teeth is either placed in Meniscotheriidae or
Phenacodontidae, implying its close relationship either with
European Orthaspidotherium and Pleuraspidotherium or with
North American Ectocion, respectively (Simpson 1945; Gazin

1965; Williamson and Lucas 1992). In recent cladistic ana-
lyses, the monophyly of Phenacodontidae was not recovered
(Kondrashov and Lucas 2012; Halliday et al. 2017).

In contrast to abundant phenacodontids from North
America, those from Asia are much rare and taxonomically
controversial due to their fragmentary material (Wang and
Tong 1997; Kondrashov and Lucas 2004). Wang and Tong
(1997) reported a phenacodont Lophocion asiaticus from the
early Eocene Wutu Formation of Shandong Province, China.
Lophocion is most similar to Ectocion from North America, but
is more lophodont with relatively more complete protoloph and
metaloph on upper molars (Wang and Tong 1997). Hooker and
Dashzeveg (2003) and Hooker (2005) suggested that Lophocion
is closer to perissodactyls than is Ectocion, which supports the
Asian origin and initial radiation of perissodactyls (Beard 1998).
Here we named a new species to Lophocion based on a maxilla
with P4-M2 from the upper Paleocene deposit of North
America, and conclude that the new taxon is morphologically
intermediate between Ectocion and L. asiaticus, and probably
gave rise to the latter during the Paleocene-Eocene transition.

Materials and methods

The new species is represented by a single right maxilla with
P4-M2 and the alveolus of M3 (AMNH FM 16060), which is
deposited at the Division of Paleontology, American Museum
of Natural History, New York. Specimens of Lophocion asia-
ticus (IVPP V 10707) and Ectocion osbornianus (AMNH FM
16099) were used for comparisons.
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Micro-CTwas utilized in order to enhance observation of the
morphology. Scanning was carried out using 225 kV micro-
computerized tomography (developed by the Institute of High
Energy Physics, Chinese Academy of Sciences (CAS)) at the Key
Laboratory of Vertebrate Evolution and Human Origins, CAS.
The beam energy and the flux are 120 kV and 120 μA, respec-
tively. The resolution per pixel for AMNH FM 16060, 16099,
and IVPP V 10707 are 18.04 μm, 21.96 μm, and 25.09 μm,
respectively. A 360° rotation with a step size of 0.5° and an
unfiltered aluminium reflection target were used. A total of
720 transmission images were reconstructed in a 2048 × 2048
matrix of 1536 slices using a two-dimensional reconstruction
software developed by the Institute of High Energy Physics and
Institute of Automation, CAS. The three-dimensional recon-
structions were performed using software VG Studio 3.2.

The terminology and measurements of teeth follows
Hooker (1989) and Thewissen (1990, Figure 1), respectively.
Log-ratio diagrams were plotted for comparisons of tooth
dimensions using the method described in Simpson (1941).

Institutional abbreviations.─AMNH FM, American
Museum of Natural History, Fossil Mammals, New York,
USA; IVPP, Institute of Vertebrate Paleontology and
Paleoanthropology, Beijing, China.

Systematic paleontology

Order ‘Condylarthra’ Cope, 1881
Superfamily Phenacodontoidea McKenna, 1995

Family Phenacodontidae Cope, 1881
Subfamily Phenacodontinae Cope, 1881

Lophocion Wang et Tong, 1997

Type species
Lophocion asiaticus Wang et Tong, 1997

Included species
L. grangeri sp. nov.

Emended diagnosis: (modified from Wang and Tong 1997)
The most lophodont phenacodonts, and similar to Ectocion in
morphology. Parastyle and mesostyle relatively large on P4-
M3. Hypocone relatively small on M1-2 and absent on M3.
On upper molars, preparaconule crista short or well-
developed, the prehypocrista consistently present and rela-
tively strong, and the postprotocrista absent or weak.
A cingulum present between the base of the protocone and
the hypocone.

Distribution: early Eocene of Asia and late Paleocene of
North America.

Lophocion grangeri sp. nov.

Holotype
AMNH FM 16060, a right maxilla with P4-M2.

Etymology
The specific name dedicated to Walter Granger (1872–1941),
who collected the holotype (with assistance of W. Stein) in
1912, and probably first noticed its unusual characters.

Type locality
The Clark’s Fork Basin of Wyoming, USA.

Comments
According to the label in association with the holotype, the
specimen (AMNH FM 16060) was collected from the head of
the Big Sand Coulee in the Clark’s Fork Basin during the
expedition of the American Museum of Natural History in
1912 (Granger and Sinclair 1914). As pointed out by Rose
(1981, p. 18), Granger’s locality in the head of the Big Sand

Figure 1. Upper dentition of Lophocion and Ectocion from North America and Asia. (a) Right maxilla with P4-M1 of Lophocion grangeri sp. nov. (AMNH FM 16060)
from the late Clarkforkian of Wyoming, USA, in occlusal (a1), buccal (a2), and lingual (a3) views. (b) Left maxilla with M1-3 (reversed) of L. asiaticus Wang et Tong,
1997 (IVPP V 10707) from the early Eocene Wutu Formation of Shandong Province, China, in occlusal (b1), buccal (b2), and lingual (b3) views. (c) Right maxilla with
P4-M3 of Ectocion osbornianus (AMNH FM 16099) in occlusal (c1), buccal (c2), and lingual (c3) views.
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Coulee (1911 and 1912 field catalogues) is probably equiva-
lent to the Phenacodus-Ectocion Zone, the latest Clarkforkian
(Cf3) (Lofgren et al. 2004).

Type horizon. The lower part of Willwood Formation, late
Paleocene (Clarkforkian).

Stratigraphic and geographic range. Type locality and hor-
izon only.

Differential diagnosis. Differs from Lophocion asiaticus in
being less lophodont with more bunodont cusps, Upper
molars with more convex buccal surface of the paracone
and metacone, shorter and weaker preparaconule cristae,
and the postprotocrista consistently absent.

Description
The P4 is triangular in outline and relatively large
(Figures 1(a), 2(a); Table 1). The paracone and metacone
are conical, approximate in size, and well separated by
a deep notch. The metacone is slightly more lingual to
the paracone. The parastyle is relatively large and protrud-
ing, widely separated from the paracone. The protocone is
the largest cusp and situates at the level of the midway
between the paracone and metacone. The preprotocrista
descends mesiobuccally from the protocone to the paraco-
nule, which is considerably larger than the metaconule and
slightly more mesially placed to the paracone. The prepar-
acrista is indiscernible. Distal to the protocone there are
two cristae distobuccally extended: The first one is distinct
and descends to a small cusp on the distal cingulum. This
crista is probably homologous with endoprotocrista in
perissodactyls (Holbrook 2015). The second crista is
weak, probably homologous with the postprotocrista in
perissodactyls (Holbrook 2015); it extends to the small
metaconule that is situated at the level of the metacone.
The cingulum is strong and nearly complete except for an
interruption at the lingual side of the protocone.

The M1 is roughly rectangular in outline, and wider than
long (Figures 1(a), 2(b); Table 1). The paracone and the meta-
cone are conical with prominent, convex ribs on the buccal
sides. The metacone is more lingually placed and depressed
than the paracone. The mesostyle is well developed, conjunct-
ing a nearly mesiodistally oriented postparacrista and an obli-
que premetacrista. The parastyle is larger and more protruded
than that of P4, and situates mesiobuccally close to the para-
cone. The protocone is the largest cusp of M1, and positioned at
the level of the point slightly distal to the paracone. A distinct
preprotocrista extends mesiobuccally to the paraconule, which
is relatively smaller than that of P4. A very short preparaconule

crista is present, ending to the mesiolingual base of the para-
cone. The postprotocrista is completely absent. The hypocone is
much smaller and slightly more lingually placed than the pro-
tocone. The prehypocrista, connecting the hypocone and the
metaconule, is relatively distinct, straight, and less oblique than
the preprotocrista. The metaconule is smaller than the para-
conule with a faint premetaconule crista. A posthypocrista des-
cends to the distal cingulum, although is partially obliterated by
the worn. The cingulum is complete and continuous on the
mesial, buccal, and distal borders. On the lingual side between
the protocone and the hypocone, there is a cingulum that is
made up of some small nodules and ascends towards the
hypocone (Figure 1(a3)).

M2 is larger than but otherwise quite similar to M1 in
morphology (Figure 2(e)); it is relatively wider owing to
a more distinct metaloph (Figures 1(a), 2(c); Table 1). M3 is
not preserved, but the alveolus shows a much smaller tooth
than the preceding molars. It is roughly transversely elon-
gated and oval in outline, indicating that the hypocone of M3
is probably absent or very weak.

Comparison and discussion

Ectocion is the most lophodont phenacodontid (except for
Meniscotherium) in North America and differs from other
phenacodontids by possessing large parastyle and mesostyle
on upper molars (Rose 1981; Thewissen 1990). Because of its
high lophodonty, Ectocion was considered as a sister group to
Meniscotherium and included in Meniscotheriinae by some
authors (Williamson and Lucas 1992; McKenna and Bell
1997; Archibald 1998). However, Meniscotherium has more
selenodont teeth with rib-like mesostyles on the upper
molars, and its sister-group relationship with Ectocion was
not supported by recent phylogenetic analyses (Kondrashov
and Lucas 2012; Holbrook 2014). Nine species of Ectocion
have been reported from North America, ranging from the
Tiffanian through the early Bridgerian (West 1976; Thewissen
1990; Novacek et al. 1991; Archibald 1998; Beard and Dawson
2009). In general, AMNH FM 16060 has more lophodont
teeth than all known species of Ectocion, especially in having
a nearly complete metaloph (or prehypocrista) and in lacking
a postprotocrista on M1-2 (Figure 1(a,c)). AMNH FM 16060
is similar to Ectocion osbornianus in size, on average, but
larger than E. parvus, E. cedrus, and E. nanabeensis, and
smaller than E. major, E. superstes, and E. ignotum
(Figures 2, 3) (Patterson and West 1973; Thewissen 1990;
Novacek et al. 1991; Beard and Dawson 2009). However, the
size range of Ectocion osbornianus is wide and almost overlap
mean values of other Ectocion species except for E. parvus
(Figure 3). AMNH FM 16060 is further similar to
E. osbornianus in having a relatively larger P4 in relation to
M1, and has the approximately equal-sized, well-separated
paracone and metacone on P4 (Figures 1, 2(d)). The well-
separated paracone and metacone on P4 are also present in
other species of Ectocion except for the primitive E. collinus
from the Tiffanian (Thewissen 1990). In addition to the more
lophodont dentition, AMNH FM 16060 further differs from
E. osbornianus in having a relatively wider M2 as in E. major
and Lophocion (Figure 2(c)), and a lingual cingulum between

Table 1. Measurements of Ectocion and Lophocion from the late Paleocene and
early Eocene of North America and Asia. (mm).

P4L P4W M1L M1W M2L M2W M3L M3W

L. grangeri 6.80 8.24 7.07 8.76 7.02 9.28 ? ?
E. osbornianusa 6.72 8.05 7.36 8.87 7.66 8.86 6.36 7.33
E. parvusa 5.60 6.55 5.67 7.37 6.33 7.30 5.20 6.06
L. asiaticus ? ? 6.34 8.37 6.66 8.44 5.54 6.72

a Measurements based on the mean values from Thewissen (1990, Table A-9, A-13)
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the protocone and the hypocone on M1-2, as in E. collinus. In
E. parvus and E. superstes, the lingual cingula are even better
developed, extending along the lingual bases of the proto-
cones (Thewissen 1990). Unfortunately, lack of the lower
dentition, especially the premolars, of AMNH FM 16060
prevents further comparison with Ectocion, species of which
are best distinguished by the premolars (Thewissen 1990).

Dental variations of Ectocion have been noticed by different
authors. When discussing variation of upper molar metaconules
in Ectocion among numerous specimens, Granger (1915, p. 349)
noticed ‘the metaconule sometimes isolated, often connected
with the protocone, and in some cases connected with both
the protocone and the hypocone’; he further mentioned that
only one specimen with ‘the metaconule found connected with
the hypocone and separated from the protocone by a deep valley
as in Perissodactyla’, which he considered as ‘an isolated exam-
ple of deviation from the ordinary condition, rather than any
distinct phylum’. It is uncertain whether or not AMNH FM
16060 is ‘the only one specimen’ mentioned by Granger (1915);
given the tooth morphology of AMNH FM 16060, we think that

the possibility cannot be excluded. We also noted that a label in
association with the specimen shows that it was initially assigned
to E. ralstonensis ? and later transferred to E. osbornianus.
Further, AMNH FM 116060 was found from the ‘Head of the
Big Sand Coulee’ in the Clark’s Fork Basin (Rose 1981), where
E. osbornianus (= E. ralstonensis) and E. parvus have been
reported by Granger (1915). The teeth of E. osbornianus from
Clark’s Fork Basin mainly varies in the morphology of p4,
relative size of m3, relative breadths of the trigonids and talo-
nids, and the proportions of the molars (Rose 1981). Rose et al.
(2012) pointed out the upper molars of E. parvus varies in the
development of lingual cingulum, twinned metaconule, and the
position of the metaconule. However, the different degree of
lophodonty was not mentioned, and both E. osbornianus and
E. parvus likely consistently have relatively more bunodont
rather than lophodont teeth. Thus, we interpret the lophodont
upper molars in AMNH FM 16060 with a consistent connection
between the hypocone and metaconule, and a separation
between the metaconule and protocone as diagnostic characters
rather than the intraspecific variation.

Figure 2. Scatter plot of P4-M2 width versus length and size proportions of Lophocion and Ectocion. (a–c) P4-M2 width versus length (in mm), and the regression
lines for width as a function of length in Ectocion. (d–e) The size proportions of P4 versus M1 (d) and M1 versus M2 (e), and the regression lines for teeth size as
a function of compared one in Ectocion. (Appendix Table 1).
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In addition to Ectocion osbornianus and E. parvus, three
more phenacodontids are also known from the contemporary
late Clarkforkian (Phenacodus-Ectocion Zone) as AMNH FM
16060: Copecion brachypternus, Phenacodus vortmani, and
P. intermedius (Thewissen 1990). Copecion brachypternus,
similar in size to E. osbornianus, differs from AMNH FM
16060 in having more bunodont teeth, a more elongated P4,
weaker parastyle and mesostyle on M1-2, and a vertical fur-
row separating the protocone and the hypocone on M1-2
without the lingual cingulum (Gingerich 1989; Thewissen
1990; Rose et al. 2012). Phenacodus vortmani and
P. intermedius are distinguished from AMNH FM 16060 by
larger size, more bunodont and less lophodont molars,
a squarer outline of P4-M2, weaker parastyle and mesostyle
on M1-2 with a stronger hypocone, and the metaconule
aligned in line between the metacone and the hypocone on
upper molars (Thewissen 1990). Phenacodus vortmani is
further different from AMNH FM 16060 in lacking the meta-
conule on P4 (Thewissen 1990).

AMNH FM 16060 also resembles Asian Lophocion in having
more lophodont teeth with more complete protoloph and
metaloph, and relatively wider upper molars (Figures 1(a,b),
2, 3). However, the degree of lophodonty of AMNH FM 16060
is less than that of Lophocion asiaticus in having more buno-
dont cusps, less sharp cristae, more convex buccal surface of the
upper molar paracones and metacones, and a weaker, shorter
preparaconule crista (Figure 1(a,b); Table 1). Moreover, the
postprotocristae of upper molars are either present or weak in
Lophocion asiaticus, contrasting to absence of those in AMNH
FM 16060. Because of these dental structures, we consider that
AMNH FM 16060 represents a taxon somewhat intermediate
between Ectocion and Lophocion asiaticus.

It is ambiguous that whether AMNH FM 16060 should
be assigned to Ectocion or to Lophocion. Considering its
horizon and locality, as well as general dental morphology,

one may assign the specimen to Ectocion, which usually has
a relatively high intraspecific variation (Granger 1915; Rose
1981). On the other hand, the difference between AMNH
FM 16060 and the contemporary Ectocion osbornianus is
probably at the generic level, as inferred from those
between E. osbornianus and a similar size Copecion bra-
chypternus from the same horizon. However, given its
derived characters with an incipient protoloph and meta-
loph and without the postprotocrista, which indicate
a more transverse shear than in Ectocion (Radinsky 1966),
assigning the specimen to Lophocion appears more reason-
able. Thus, instead of erecting a new genus, we prefer
assigning the specimen to Lophocion rather than to
Ectocion. The derived characters between Lophocion gran-
geri and L. asiaticus suggest that the latest Paleocene
L. grangeri probably dispersed to Asia via the Bering
Strait, as some other mammals did during the Paleocene-
Eocene transition (McKenna 1983; Krause and Maas 1990;
Tong and Wang 2006; Bai et al. 2018), and gave rise to the
early Eocene L. asiaticus. However, the age of Wutu Fauna
is controversial, and is considered to be either latest
Paleocene (Beard and Dawson 1999) or early Eocene
(Tong and Wang 2006). Similarly, North American
Phenacodus vortmani likely migrated to Europe and gave
rise to European Phenacodus during the Paleocene-Eocene
transition (Thewissen 1990).

As discussed above, a close relationship between Ectocion
and Meniscotherium is not supported (Kondrashov and Lucas
2012; Holbrook 2014), so we include both Ectocion and
Lophocion in Phenacodontinae (within Phenacodontidae)
rather than in Meniscotheriinae as suggested by Kondrashov
and Lucas (2004) and McKenna and Bell (1997). Hooker and
Dashzeveg (2003) proposed Lophocion as the sister group to
perissodactyls, and considered Lambdotherium-like perissodac-
tyls probably from late Paleocene deposit of China as the basal

Figure 3. Log-ratio diagram for P4-M2 measurements of Ectocion and Lophocion. E. osbornianus is used as a standard for comparison (straight line at zero). The mean
values of six species of Ectocion are from Thewissen (1990), and those of E. osbornianus are based on material from Phenacodus-Ectocion zone with a minimum-
maximum range represented by the gray area (Thewissen 1990, table A-9). The measurements of P4 in E. major are from Patterson and West (1973), and those of
M1-2 are from the figure of Thewissen (1990, fig. 23).
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perissodactyl (Meng et al. 1998); however, current fossil records
do not indicate an unequivocal choice for the ancestral mor-
photype of perissodactyls. Bai et al. (2018) recently proposed
that different groups of perissodactyls may have diverged as
early as in the earliest Eocene and dispersed among Holarctic
regions during the Paleocene-Eocene transition, which further
obscures the ancestral morphotype of perissodactyls. The phy-
logenetic position of Lophocion as well as other phenacodontids
within ungulates obviously requires more investigation and the
discoveries of more complete material of Lophocion.

Conclusions

We described a new species Lophocion grangeri sp. nov. from
the upper Paleocene Willwood Formation in the Clark’s Fork
Basin of Wyoming, USA. The new species is based on a right
maxilla with P4-M2 that shows an intermediate morphology
between contemporary Ectocion osbornianus and early
Eocene Lophocion asiaticus. Compared with relevant genera
of Phenacodontidae, we assign the new species to Lophocion
rather than to Ectocion (or to erect a new genus); this is
mainly based on its derived incipient lophodont protoloph
and metaloph, which is shared with L. asiaticus. Future
investigation on the variation of Ectocion and discovery of
more specimens of Lophocion will provide more information
on radiation and dispersal of phenacodontid condylarths.
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Appendix

Table 1. Measurements of P4-M2 of Lophocion and Ectocion. The values of Ectocion nanabeensis and E. ignotum are from Beard and Dawson (2009) and Novacek
et al. (1991), respectively. The mean values of other species of Ectocion are from Thewissen (1990) except for E. major (Patterson and West 1973).

Species P4L P4W M1L M1W M2L M2W Ln P4 area Ln M1 area Ln M2 area

Lophocion grangeri 6.8 8.24 7.07 8.76 7.02 9.28 4.03 4.13 4.18
L. asiaticus NA NA 6.34 8.37 6.66 8.44 NA 3.97 4.03
Ectocion collinus 5.83 6.76 7.21 8.39 7.4 8.36 3.67 4.10 4.12
E. cedrus 5.8 6.77 6.72 7.78 7.3 8.16 3.67 3.96 4.09
E. mediotuber 5.91 7.06 6.94 8.18 7.46 8.28 3.73 4.04 4.12
E. major 8.1 9.4 7.5 10 7.5 10 4.33 4.32 4.32
E. parvus 5.6 6.55 5.67 7.37 6.33 7.3 3.60 3.73 3.83
E. superstes 7 8.4 7.85 10.1 8.3 10.2 4.07 4.37 4.44
E. ignotum 7.35 8.59 NA NA 8.15 11.09 4.15 NA 4.50
E. nanabeensis 4.55 6.05 NA NA NA NA 3.32 NA NA
E. osbornianus (A9-mean) 6.72 8.05 7.36 8.87 7.66 8.86 3.99 4.18 4.22

Bold number: measured from the plates.
Italic number: approximate measurements.
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