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In the recent study in Current Biology 
by Pei and colleagues1, we used two 
proxies — wing loading and specifi c 
lift — to reconstruct powered fl ight 
potential across the vaned feathered 
fossil pennaraptorans. The results 
recovered multiple origins of powered 
fl ight. We respectfully disagree with 
the criticism raised by Serrano and 
Chiappe2 that wing loading and 
specifi c lift, used in sequence, fail to 
discriminate between powered fl ight 
and gliding. We will explain this in 
reference to our original conservative 
approach.

We agree that wing loading alone 
does not distinguish between obligate 
gliders (i.e. gravity-powered, non-
fl apping fl ight) and powered fl yers. 
Used alone, wing loading only 
distinguishes between fl ying (i.e. 
obligate gliders plus powered fl yers) 
and non-fl ying taxa. However, the 
second stage of our work was a 
fl apping fl ight power analysis that 
generated conservative specifi c lift 
estimates for fl apping wings. Such 
an analysis explicitly and specifi cally 
tests for powered fl ight potential. To 
account for uncertainties in estimating 
performance, muscle power was 
allowed to vary over a considerable 
range (Po,m from 225 to 287 Wkg−1). 
Our analysis specifi cally estimated the 
ability of the fossil taxa to achieve a 
positive rate of climb, using fl apping 
fl ight, following a hind limb propelled 
launch. These behaviours defi ne a 
powered fl yer. Our specifi c lift analysis 
explicitly models powered fl ight, not 
fi xed wing fl ight. There remains the 
potential to detect obligate gliders 
among ‘marginal’ taxa that we 
recovered as not capable of powered 
fl ight. This could be the case for taxa 
that were arboreal or scansorial, as 
shown for scansoriopterygids3.
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Serrano and Chiappe2 note that 
wing loading lacks a direct or simple 
relationship to powered fl ight, citing 
Pennycuick4. While correct, it is 
important to note that this does not 
mean such a relationship is absent. 
The same study4, and others5–7, has 
demonstrated that wing loading does 
have a relationship to fl apping fl ight 
performance. This relationship is 
complex and indirect, but still important 
to fl apping fl ight performance analysis. 
Pennycuick4 identifi es this most directly 
in his demonstration of how fl apping 
frequency, wing shape, and body mass 
are interrelated. Powered fl yers have 
a wider range of wing loadings than 
obligate gliders because they generate 
additional airspeed (and vorticity) over 
the wings by fl apping. This means that 
the maximum wing loading for powered 
fl ight is higher than for obligate gliding 
fl ight8, up to ~2.5 gcm-2; this is why 
we used this threshold to distinguish 
between fl ying and non-fl ying taxa. Total 
lift depends directly on wing area (fi rst 
power) and the square of the airspeed 
over the wings. The squared infl uence 
of airspeed gives higher fl apping 
frequency a major performance boost. 
However, for a given wing shape, power 
potential and body size, there is a limit 
on fl apping frequency. Consequently, 
total wing area in any fl apping fl yer has 
a minimum value, below which, thrust 
and weight support will be insuffi cient 
for powered fl ight. This places a ceiling 
on wing loading for powered fl ight, over 
a given power, range of motion, and 
maximum lift coeffi cient, all of which 
we accounted for in our specifi c lift 
analysis.

Serrano and Chiappe2 raise concerns 
about the muscle power estimates we 
made for non-avialan paravian taxa, 
and our use of a model modifi ed from 
Marden9. They note that our estimates 
of specifi c lift are sensitive to the 
estimates of available power. We have 
justifi ed our use of Marden’s model9 for 
fossil pennaraptorans in our paper1 and 
elsewhere5–7. We expand in this regard 
below to provide a more complete 
understanding of our methodology.

We acknowledge that specifi c lift 
calculations are sensitive to estimates 
of available muscle power. For this 
reason, we chose the most conservative 
estimates for the fl ight muscles (fl ight 
mass ratio of 10% and maximum 
muscle mass-specifi c power output of 
vier Inc. 
censes/by-nc-nd/4.0/).

mailto:fjsa@uma.es
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fjsa@uma.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2021.03.059&domain=pdf


Magazine
ll

 

 

 

225–287 Wkg-1). Marden’s model deals 
with climb out immediately after launch, 
which is a rapid action, so our estimates 
refl ect this in relating to burst fl ight. 
They are within the expected range 
for the combination of aerobic and 
anaerobic muscle action during a burst 
type action and well below (49–60%) of 
the maximum power output measured 
for extant avians (460 Wkg-1)10. Aerobic 
power output is lower in living birds 
at ~175 Wkg-1 and aerobic muscle 
dominates during endurance activities. 
During climb out, as we have modelled, 
birds utilise some fraction of anaerobic 
muscle for short-duration power10. 
We have not examined whether these 
taxa could sustain fl ight for long time 
periods, which is beyond the scope of 
our paper. We only examined whether 
powered fl ight was potentially available 
to the taxa examined, meaning that they 
could take off and achieve a positive 
rate of climb. The power outputs we 
used, with a maximum of 287 Wkg-1, 
limit the modelled animals to mostly 
aerobic power and/or relatively low-
grade anaerobic muscle, avoiding 
the use of maximum crown-group 
estimates. 

Serrano and Chiappe2 highlight the 
lack of forward speed in Marden’s 
model. Marden’s model does not 
include forward speed because, 
during climb out and other slow-fl ight 
phases, the translational speed relative 
to fl apping speed is quite low. Our 
model specifi cally evaluates climb 
out immediately after launch in a 
conservative fashion. For both obligate 
gliders and powered fl yers, launch is 
powered by the walking limbs, and this 
provides some initial forward speed. 
Any underestimation of forward speed 
we make is for all taxa, meaning that 
more taxa would be identifi ed with 
powered fl ight potential than that 
already found. As we estimate the 
ability to achieve a positive rate of climb 
by fl apping, this does not compromise 
our ability to distinguish powered fl yers 
from obligate gliders.

Contrary to the assertion of Serrano 
and Chiappe2, Marden’s model does 
discriminate between fl yers that can 
achieve climb out after launch and 
those that cannot. However, it does not 
discriminate between standing launch 
and running launch. Flight muscle ratio 
has little to do with launch performance 
in most birds. This is because launch 
is hind limb driven, and fl ight muscle 
ratio does not predict standing vs 
running launch utilisation in extant birds.
Observational and mechanical data 
indicate that running launch is primarily 
an adaptation of anatids and diving 
waterfowl. They regularly take-off from 
water with shortened hind limbs with a 
position and range of motion adapted 
to swimming that precludes powerful 
leaping. 

The very large forelimbs of 
Rahonavis are suggested by an 
unusually long ulna that is longer than 
the femur and tibia. When originally 
described, Rahonavis was inferred 
as a powered fl yer. Our conservative 
wingspan estimate for Rahonavis uses 
measurements from the dromaeosaurid 
Microraptor. If Rahonavis was a fossil 
bird, the ulna should be proportionally 
longer than the other forelimb long 
bones and the entire forelimb should be
longer compared to dromaeosaurids. 
Depending on the power value used, 
the minimum wing length needed 
for Rahonavis to pass the specifi c 
lift threshold is 360–480 mm, only 
necessitating primary feathers that 
are a few millimetres to under 16 cm 
long. These primary feather estimates 
are conservative compared with 
the longer primaries of similar-sized 
paravians, e.g. 20+ cm in Microraptor 
and Jeholornis. Rahonavis was 
therefore reasonably modelled based 
on available data. Our performance 
estimates for Microraptor also support 
multiple origins of powered theropod 
fl ight. 
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