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The iconic sabretooth Homotherium is thought to have hunted cooperatively,
but the origin of this behaviour and correlated morphological adaptations
are largely unexplored. Here we report the most primitive species of Amphi-
machairodus (Amphimachairodus hezhengensis sp. nov.), a member of
Machairodontini basal to Homotherium, from the Linxia Basin, northeastern
border of the Tibetan Plateau (9.8–8.7 Ma). The long snout, laterally oriented
and posteriorly located orbit of Amphimachairodus suggest a better ability to
observe the surrounding environment, rather than targeting single prey,
pointing to an adaptation to the open environment or social behaviour. A
pathological forepaw of Amphimachairodus provides direct evidence of part-
ner care. Our analyses of trait evolutionary rates support that traits
correlated with killing behaviour and open environment adaptation evolved
prior to other traits, suggesting that changes in hunting behaviour may be
the major evolutionary driver in the early evolution of the lineage. A. hezhen-
gensis represents one of the most important transitions in the evolution of
Machairodontini, leading to adaptation in open environments and contribut-
ing to their further dispersal and radiation worldwide. This rapid
morphological change is likely to be correlated with increasingly arid
environments caused by the rise of the Tibetan Plateau, and competition
from abundant large carnivores in this area.
Highlights
The earliest Amphimachairodus discovered exhibits craniodental adaptation to
open environment and social behaviour.

Adaptations to change in habitat and killing behaviour evolved prior to
other traits.

Adaptatons to open environments and social behaviour first occurred near
the Tibetan Plateau, probably due to aridification as the plateau was formed.
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1. Introduction
The Plio-Pleistocene sabretoothed cat Homotherium represents a
unique member of Felidae, with special hunting and social
behaviours [1–6]. The origin of this behaviour and of correlated
morphological traits remain largely unexplored, however, due
to the paucity of well-preserved early representatives, and
concomitant lack of targeted morphological studies.

The tribe Machairodontini, which Homotherium belongs
to, can be traced back to the Miocene [7]. The Late Miocene
represents the pinnacle of sabretoothed cat diversity [2,8,9].
The genus Amphimachairodus is the most widely distributed
and successful genus among Late Miocene forms, and is
known in Europe [10–12], western Asia [13], central Asia
[14], eastern Asia [15–17], southeastern Asia [18,19] and
North America [20–22]. This genus is mainly documented
in the Turolian or deposits of equivalent age, with very abun-
dant remains from the Linxia Basin (Yangjiashan Fauna and
Qinpushan Fauna; 8–6 Ma [23]) and Baode in China (7.25–
5.3 Ma [15,24]), and in the Quiburis Formation and Coffee
Ranch in southwestern North America [25]. Many cranial
traits of Amphimachairodus (e.g. the long snout and enlarged
mastoid) are already Homotherium-like, suggesting potentially
similar adaptations [7]. However, where Amphimachairodus
originated and the function of these traits are still unclear.

In this study, we report a nearly complete cranium from
Houshan locality, belonging to the Dashngou Fauna of the
Linxia Basin (9.8–8.7 Ma), located on the northeastern
border of the Tibetan Plateau [23,26] (figure 1). The cranium
was listed in faunal list as Machairodus palanderi and Amphi-
machairodus sp. by previous authors but not formally
reported or described [23,26]. The new cranium shows typical
Amphimachairodus traits, representing the earliest member of
the genus and providing a basis for investigating its peculiar
morphology and adaptions.
2. Systematics
Order Carnivora Bowdich, 1821

Family Felidae Batsch, 1788
Subfamily Machairodontinae Gill, 1872
Tribe Machairodontini Gill, 1872
Amphimachairodus Kretzoi, 1929
Diagnosis: machairotont of large size. Rostrum long, and

forehead wide. Orbit anterior border located at P4. Glenoid
fossa overhung above basicranium. Mastoid process large,
and paroccipital moderate to highly reduced. Mandibular
flange weak or moderate, cornoid process small. Incisors
large with serration, and upper I1 and I2 with laterally pos-
ited accessory cusps. P2 variably present. P3 with distinct
anterior accessory cusp. P4 with distinct preparastyle and
moderate to very small protocone. m1 with metaconid-talo-
nid complex mostly absent.

Included species: Amphimachairodus giganteus (Wagner,
1848), Amphimachairodus horribilis (Schlosser, 1903), Amphima-
chairodus palanderi (Zdansky, 1924), Amphimachairodus
coloradensis (Cook, 1922), Amphimachairodus alvarezi Ruiz-
Ramoni et al. 2019 and Amphimachairodus hezhengensis sp. nov.

Amphimachairodus hezhengensis sp. nov.
Machairodus palanderi p.257, Deng et al. 2013
Amphimachairodus sp. p.11 Jiangzuo et al. 2023
Holotype: HMV2041, a nearly complete cranium (figure 1;
electronic supplemenatry material, figures S1 and S2).

Etymology: After the place (Hezheng Paleozoological
Museum, Hezheng, China) where the specimen was found
and is currently stored.

Type locality: Houshan, Linxia Basin, Gansu province of
northern China.

Chronology and distribution: Thus far only known from the
early Late Miocene of northern China.

Diagnosis: medium-sized Amphimachairodus with small
incisors and I1 with lingually posited accessory cusps; long
C-P3 diastema; presence of P2; relatively small cheek teeth;
small P4 preparastyle and moderate protocone.

Differential diagnosis: differs from Machairodus and Nimra-
vides in having different cranial morphology, e.g. lower angle
between facial and neurocranial part, wide forehead,
retracted orbit and long rostrum, shorter and dorsally
arched zygomatic arch, slightly overhanging glenoid fossa,
more arched incisor row and more separated lingual
accessory cusps in I2, presence of P2, more distinct P4 prepar-
astyle and smaller protocone; differs from Lokotunjailurus in
having larger size, longer C-P3 diastema, stronger P3 anterior
accessory cusp and more robust P4; differs from other species
of Amphimachairodus in having smaller incisors, I1 with two
closely located lingual accessory cusps, longer C-P3 diastema,
smaller cheek teeth, smaller P4 preparastyle and slightly
larger protocone.

(a) Description
See electronic supplementary material, appendix for detailed
description and measurements.
3. Phylogenetic and biogeographic analyses
The Bayesian phylogenetic analyses with and without tip-
dating support that the new species is in a position intermedi-
ate between Machairodus and Turolian or equivalent-aged
(herein ‘Turolian’) Amphimachairodus (figure 2; electronic
supplementary material, figures S5 and S6). The Houshan
cranium always forms the sister group of the lineage consi-
sting of Turolian or equivalent-aged Amphimachairodus,
Lokotunjailurus, Taowu, Adeilosmilus and Homotherina. The
major differences lie in the different positions of Lokotunjai-
lurus, which was sister to Homotheriina in ordinary bayes
analysis (figure 5). The positions of metailurine felids are
rather unstable in both two analyses and do not form mono-
phyletic group in either analysis, but as our matrix mainly
concerns the morphology of Machairodontini, the the
position of metailurines in this study can be treated with
circumspection.

Even though our analyses do not support that the
Houshan cranium forms the sister group to a monophyletic
Amphimachairodus, we do not erect a new genus for it as
did Jiangzuo et al. [7] for Adeilosmilus and Taowu. This is
because the Houshan material is close the Turolian Amphima-
chairodus in age and general morphology, and the potentially
related genera Lokotunjailurus is only known from jaw frag-
mented and its ancestor form is largely unknown. The
creation of a separate genus for the Houshan cranium is
thus not justified and creates difficulty for assigning isolated
material in the future. By contrast, Adeilosmilus clearly shows
a craniodental morphology linking it to Homotherina, and
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Taowu is much younger and smaller, so the separation of
these two genera is justified.

Our biogeographic analyses favour a BAYAREALIKE + J
model, and imply that the lineage of A. hezhengensis and
other more derived Machairodontini probably originated in
Asia (figure 2). As seen in this figure, the diversification
centre of Machairodontini changed several times in its evol-
utionary history. We further draw the diversification,
dispersal and vicariance lines of this tribe, and find that the
diversificaition and dispersal of this tribe increase dramati-
cally after the appearance of A. hezhengensis. An adaptation
to open environments (see below) and global aridification
in the Late Miocene [27] contributed to its geographical
expansion and diversification. Both diversification and vicar-
iance reach their peaks in the latest Miocene, then reduce
significantly following the great environmental change at
the Miocene–Pliocene boundary [28–32], and only the Afri-
can lineage (from Adeilosmilus to Homotheriina) survived.
Subsequently, the dispersal of the tribe continues and reaches
its peak in the Early Pliocene, resulting in a second increase in
diversification. In the Pliocene, the Homotheriina evolved
derived postcranial traits that are more adapted to open
environments [33,34]. This adaptation increased the dispersal
ability of Homotheriina, and weakens the vicariance effect,
leading to the occurrence of widely distributed species (e.g.
the pan-Eurasian H. crenatidens and H. latidens) but low
diversity for the subtribe as a whole.
4. Evidence for adaptations to open
environments and social behaviour in early
Machairodontini

As in other species of Amphimachairodus, A. hezhengensis has a
forehead that is much wider than the rostrum. A very wide
forehead is seen in modern cheetah Acinonyx jubatus and
snow leopard Panthera uncia and is correlated with an
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enlarged frontal sinus [35]. The frontal sinus is connected
with the nasal passages through small ostia and is normally
in continual communication with the nasal air [36]. An
expanded frontal sinus can serve as a thermal buffer for
cold hair and heat dissipation during running, and help in
respiration. Both Ac. jubatus and P. uncia live in open environ-
ments [37]. The wide forehead in Amphimachairodus is
therefore likely to be an adaptation to open environments.

http://www.digimorph.org/index.phtml
https://fossilhuntress.blogspot.com/2016/10/
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Such a wide forehead is absent in Nimravides and Machairodus
[11,20,38]. Notably, Homotherium also has a wide forehead,
whereas Xenosmilus, which has less cursorial postcranial
bones and lived in forest, has a narrower forehead [39].

The GM analysis (lateral view) also suggests that
A. hezhengensis is located close to other species of Amphima-
chairodus, but is distinct from Machairodus. The major
differences are in the first PC, which mainly explains differ-
ences in the length of the rostrum of the cranium and
zygomatic length (figure 3a). It is interesting to note that
the derived traits exhibited in A. hezhengensis are mainly cra-
nial traits that are correlated with specialized hunting
behaviour. The short zygomatic arch and large mastoid pro-
cess suggest that masticatory strength is weakened, whereas
the neck muscles tend to become better developed [3,40,41].
This suggests that the hunting behaviour of A. hezhengensis
is closer to younger Amphimachairodus and Homotherium, in
using a bite mainly effectuated by neck muscles to quickly
kill the prey, and different from that of Machairodus, whose
killing behaviour is probably effectuated mainly by the
temporal and masseter muscles, like those of living big cats.

The long rostrum can lead to an increase in gape. The less
angled facial and neurocranial parts, retracted orbit (in the
middle of the cranium), and long rostrum are reminiscent
of the modern lion Panthera leo. This morphology may be
related to a wider field of view but a weaker ability to
target a single point. We calculated the angle between the
long axis of the orbit and the sagittal plane (in dorsal view;
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figure 3b for details). Even though there is overlap, the lion
Pa. leo has a significantly smaller angle compared with
other species of Panthera, which otherwise have similar
angles, except Pa. uncia with a very large angle (figure 3c).
A small angle suggests a laterally oriented orbit. In Felini,
Puma has a similar angle to that of most species of Panthera,
whereas Acinonyx is close to Pa. uncia. Machairodus and Nim-
ravides have large angles, similar to Pa. uncia and Acinonyx,
whereas Amphimachairodus and Homotherium have similar
values to Pa. leo. Of this feature, A. hezhengensis is within
the range of variation of A. horribilis, which has a similarly
laterally oriented orbit. In open environments, prey are
more conspicuous, and thus precise targeting by stereo
vision becomes less necessary in general, but Acinonyx is
able to run swiftly when chasing prey, and P. uncia needs
to target caprine prey in rock cover. Both species require
stereo vision. A laterally oriented and posteriorly located
orbit on the side of the cranium allows for a wider field of
view (figure 3b), and assists in prey identification, as well
as targeting other companions during cooperative hunting,
a trait more correlated with social behaviour. This adaptation
is well developed in lions as compared to other pantherine
cats and is developed to a still greater degree in Amphima-
chairodus. The situation in Machairodus is more similar to
that of the tiger (figure 3a,c). Such contrasts suggest similar
differences in adaptation between Amphimachairodus and
Machairodus, just like lion and tiger.

Our ancestral state reconstruction (electronic supplemen-
tary material, figure S9) supports that this unique cranial
trait first evolved in A. hezhengensis and remains unchanged
in more derived Machairodontini. The difference in angle
between Amphimachairodus and that of the cheetah suggests
that the hunting behaviour of Amphimachairodus is closer to
Pa. leo than to Ac. jubatus.
Our analyses of the evolutionary rate of traits support that
the traits correlated with open environment, as well as those
correlated with killing behaviour (see detailed set in Material
and Methods section), exhibit the highest rates in the branch
between M. aphanistus and A. hezhengensis (figure 4). This
suggests that the evolution from Machairodus to Amphima-
chairodus that occurred in the Linxia Basin represents the
most significant adaptative transition in Machairodontini
evolution. The general traits exhibit the highest rate from
A. hezhengensis to more derived Machairodontini, and many
of these involve cheek teeth. The cheek teeth of A. hezhengen-
sis are small and less derived, suggesting that the cutting
efficiency of A. hezhengensis is weaker than that of the Turo-
lian or equivalent-aged species of Amphimachairodus. The
increased cheek tooth size from A. hezhengensis to the derived
species of Amphimachairodus reflects enhanced cutting effi-
ciency for shortening foraging time, possibly in the face of
increased diversity of scavengers, including hyaenids, at
that time.

A pathological forepaw (figure 1c) is also known from the
Linxia Basin (unclear locality). The forepaw is intact, with
carpals, MC2-5, and corresponding phalange preserved.
The size (MC3 length 101.86 mm) is similar to a small tiger
or lion (101.01–124.00 mm, n = 17) and is similar in
morphology. The middle phalanges are asymmetric to
accommodate the claws. The claw is very large, and shows
a gradually smaller size from the second claw to the fifth
claw. This morphology fits with Amphimachairodus. The
MC3 and MC4 became fused during the healing, which
greatly restricted their normal function for prey capture and
is likely to reduce down the running speed of the individual.
Such an injury would severely influence the hunting success
of the animal, yet the remodelled porous surface in MC3 and
MC4 indicates the development of a chronic condition during
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from MN9-11 of Eurasia. (c) Non-metric MDS analysis of faunal composition (family level diversity) of the Dashengou Fauna and faunae from western Eurasia.
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healing, suggesting that the individual continued to survive
after injury for quite a long time. The healed fractures
support the existence of partner care, pointing to social
behaviour in Amphimachairodus.
5. The origin of Amphimachairodus from the
northeastern border of the Tibetan plateau

The discovery from the middle Bahean (equivalent to MN10 of
Europe) makes A. hezhengensis the earliest known definite
Amphimachairodus. In Europe, a very large collection of
M. aphanistus is found in Batallones 1 and 3, Spain, both
MN10 [11,38]. A. hezhengensis is distinctly more derived than
M. aphanistus from these Spanish sites. This is in agreement
with our biogeographic analyses, implying Amphimachairodus
originated on the northeastern border of the Tibetan Plateau.

As seen in the analyses above, the cranial morphology of
Amphimachairodus shows adaptations to open environments
and cooperative hunting. This coincides with the paleoenvir-
onmental evidence. The significant rise of the northern
Tibetan Plateau in the Middle and Late Miocene [42] has a
huge impact on the ecosystem of the Linxia Basin, which
experienced a significant faunal restructuring at the
Middle/Late Miocene boundary, and almost none of the
Middle Miocene genera continue into the Late Miocene,
and nearly all mammals from the Guonigou Fauna are new
immigrants [43]. These new immigrants are represented by
large high-crowned elasmotherines and hipparionine
horses, both pointing to an open and dry environment.
This environment continues to the Dashengou fauna, and
hipparionines in this fauna also show more cursorial adap-
tations than contemporary hipparionines in Europe [44]. By
contrast, there is no significant faunal change at the
Middle/Late Miocene boundary in Europe, and many
Middle Miocene genera continue into the early Vallesian [45].

To further test this hypothesis, we compiled the faunal list
of the three faunas—Guonigou, Dashengou and Yangjia-
shan—with ages equivalent to MN9, MN10 and MN11 of
Europe. We also selected 23 western Eurasian faunas from
MN9–MN11 with abundant remains. These were down-
loaded from the NOW database [46] with amendments
from the literature (see electronic supplementary material,
appendix for details). We identify each species to open or
closed environment, judging from dental morphology and
previously published microwear for herbivores [47–49], and
craniodental traits of carnivores (see electronic supplemen-
tary material, appendix for details). We found a high
proportion of species with open environment adaptations
in the earliest Late Miocene in the Linxia Basin and these
environments persisted in the basin (figure 4). By contrast,
western Eurasia shows a gradual increase in aridification
since MN9 and shows geographical heterogeneity as pre-
vious research has suggested [50,51]. The overall faunal
composition (at the family level) of the Dashengou Fauna is
similar to MN11 faunas of western Eurasia as revealed by a
non-metric MDS analysis, supporting the early aridification
of the Linxia Basin. In the more eastern part of China in the
lower Bahe Formation, the faunal is still dominant by forest
species, e.g. viverrid, suid, cervid and low-crowned bovid
[52], suggesting that at the beginning of the late Miocene,
the arid area is still restricted to Tibetan Plateau at this time.

The early arid environment in the Linxia Basin, probably
due to the uplift of the Tibetan Plateau to a significant height
at this time [53,54], provides an environmental trigger for the
appearance of open-environmental adaptions among mam-
mals. Open environments also benefit social behaviour
[55,56], due to the increasing visibility of carnivores to each
other, and also of preys, which makes them more difficult
to catch. When such arid environments spread at the
MN11, Amphimachairodus followed.

Another factor that pushed the rapid morphological
evolution and social behaviour of Amphimachairodus is the
presence of abundant large Carnivora on the northeastern
border of the Tibetan Plateau. These are especially rep-
resented by the huge bone-cracking percrocutid hyaena
Dinocrocuta gigantea [57]. This hyena is by far the most
common species of Carnivora in the Dashengou Fauna and



Figure 6. Reconstruction of two Amphimachairodus hezhengensis defending
their prey (Hezhengia bohlini) from two Dinocrocuta gigantea. Artwork by
Oscar Sanisidro.
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reaches a body mass estimate of approximately 380 kg based
on dental size [58], though the known postcranial bones [59],
and an unpublished skeleton from the Linxia Basin suggests
it is not that large, but similar to Amphimachairodus in size
(see a life reconstruction in figure 6). Two unpublished
agriotherine bears (size of Indarctos atticus) are also present
in this fauna. Such abundant large predators not only com-
pete with machairodonts, but also bring direct threats to
their lives, as large carnivore tends to kill the cubs or juven-
iles, or single individual of other carnivores, just as modern
spotted hyena and lion [60]. The open environment increases
such competition and threats due to limited cover and high
visibility. In Europe, Machairodus of the Vallesian often coex-
isted with Indarctos and amphicyonids with similar body size
to that of Machairodus [61–64], and these species are often less
abundant than Machairodus [11], but in the Dashengou Fauna
of the Linxia Basin, Dinocrocuta is much more abundant than
Amphimachairodus [26]. The defense for territory and life from
other carnivores is an important trigger of social behaviour in
Carnivora [65]. The Quaternary hyaenids Pachycrocuta is
known as prey kleptoparasite of sabretoothed cats [66]. This
is probably also the case in the Linxia Basin for Dinocrocuta
and Amphimachairodus, and the two large agriotherine bears
probably also have a bone-cracking diet and involve in
such behaviour. The abundant large predators/scavengers
on the northeastern border of the Tibetan Plateau may have
created significant pressure on the early evolution of
Machairodontini (figure 6).
6. Material and methods
(a) Institutional abbreviations
AMNH FM fossil mammal collection of the American
Museum of Natural History, New York, USA

AMNH F:AM Frick collection (fossil mammals), Division
of Paleontology, AMNH, New York, USA

HM(V) Hezheng Paleozoological Museum, Hezheng,
China

IVPP Institute of Vertebrate Paleontology and Paleoan-
thropology, Chinese Academy of Sciences, Beijing, China

UCMP University of California Museum of Paleontology,
Berkeley, USA
YLSNHM Yingliang Stone Natural History Museum,
Quanzhou, China
(b) Other abbreviations
BI Bayes inference

H height
L length
M/m upper/lower molar
MN units of the Neogene land mammals of Europe
MP maximum parsimony
P/p upper/lower premolar
OTU operational taxonomic units
(c) Fossils and methods
The material of the new taxon described in this study is
housed at the Hezheng Paleozoological Museum, Hezheng,
China. Material of Machairodus at the AMNH, material
of Amphimachairodus at the AMNH, HM, IVPP, UCMP,
YLSNHM, and material of Homotherium from AMNH, IVPP
and HM, were examined for systematic study.

Terminology of skull anatomy follows Qiu et al. [67],
with minor modifications. The measurements follow Jiang-
zuo & Liu [68] with modification, and are shown here in
electronic supplementary material, figure S1. Parts of the
figure plots were made in the software package ggplot2
[69] in R [70].

Bayesian inference using MrBayes 3.2.7 [71,72] was
employed in the phylogenetic analyses. We performed both
a non-dating method and a tip-dating method with a relaxed
clock model [73]. In practice, Smilodontini has an unstable
position and causes long-branch attraction, but this it is not
the focus in this study, so we excluded this tribe in the ana-
lyses. Constraint on Machairodontinae was both performed
in MrBayes.

Our matrix is adopted from Jiangzuo et al.[7], adding the
new species and two corresponding traits: the antero-pos-
terior width of the glenoid fossa, and shortening of the
zygomatic arch (in red in electronic supplementary material,
appendix).

For analyses of the evolutionary rate of different
characters, we subdivided 71 traits into three categories:
(i) general traits, including traits 9–45, 48, 57, 59–63, 65–67
and 70; (ii) traits correlated with open environments, includ-
ing traits 50–54 and 58; (iii) traits correlated with killing
behaviour, mainly those describing incisor size and canine
morphology, and some key craniomandibular traits (e.g.
length of the zygomatic arch, size of the mastoid process
and size of the coronoid process), including traits 1–8, 46–
47, 49, 55–56, 64, 68–69 and 71. The analyses were based on
the tip-dating tree.

For biogeographic analyses, we tested different models
using the methods proposed in BiogeoBEARS [74]
implemented in the software RASP 4.2 [75,76]. The detailed
setting of geographical information is provided in the elec-
tronic supplementary material, appendix. The best-fit model
was chosen by weighted AICc. The diversity, dispersal and
vicariance lines of Machairodontini are drawn through time
from 12 Ma to present. The ancestral state was reconstructed
using Bayestraits implemented in the software RASP 4.2
[75,76].



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20230019

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 D

ec
em

be
r 

20
23

 

(d) Fossil locality
Houshan is a classical fossil site within the Linxia Basin,
belonging to the Dashengou Fauna, best known for produ-
cing hundreds of skulls of Hezhengia [77]. Very abundant
mammalian remains have been found from this fauna
(see details in [23]). The huge hyaenid Dinocrocuta gigantea
is the most abundant carnivore. The machairodont in this
fauna was previously determined as Machairodus palanderi
[23], and a juvenile mandible was recently determined
as Machairodus aphanistus [78]. Other carnivores known
include two medium-sized Agriotheriini bears, three
mustelids (Promeles sp., Martes sp. and Pekania sp.), two
skunks (Promephitis parvus and Promephitis hootoni), one
barbourofelid (Albanosmilus sp.) and four hyaenids, the
latter being Hyaenictitherium sp. (smaller than typical
H. wongii), Ictitherium cf. viverrinum, Adcrocuta eximia and a
new small form with a short rostrum. An age estimate of
8.7–9.8 Ma is proposed for the fauna [23].

Data accessibility. Data used in this study can be found in electronic
supplementary material, appendix [79].
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