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Transitional mammalian middle ear from
a new Cretaceous Jehol eutriconodont
Jin Meng1,2, Yuanqing Wang2 & Chuankui Li2

The transference of post-dentary jaw elements to the cranium of mammals as auditory ossicles is one of the central topics
in evolutionary biology of vertebrates. Homologies of these bones among jawed vertebrates have long been
demonstrated by developmental studies; but fossils illuminating this critical transference are sparse and often
ambiguous. Here we report the first unambiguous ectotympanic (angular), malleus (articular and prearticular) and
incus (quadrate) of an Early Cretaceous eutriconodont mammal from the Jehol Biota, Liaoning, China. The
ectotympanic and malleus have lost their direct contact with the dentary bone but still connect the ossified Meckel’s
cartilage (OMC); we hypothesize that the OMC serves as a stabilizing mechanism bridging the dentary and the detached
ossicles during mammalian evolution. This transitional mammalian middle ear narrows the morphological gap between
the mandibular middle ear in basal mammaliaforms and the definitive mammalian middle ear (DMME) of extant
mammals; it reveals complex changes contributing to the detachment of ear ossicles during mammalian evolution.

The lower jaw of non-mammalian amniotes is composed of the tooth-
bearing dentary and several post-dentary bones; that of mammals is
formed by the dentary alone. In contrast, there is only one ossicle, the
columella auris (or stapes), in the middle ear of non-mammalian
amniotes, but there are multiple ossicles in mammals, including the
malleus, incus, stapes and ectotympanic1–4. Fossils have shown a series
of reductions of the post-dentary bones during synapsid evolution
towards mammals1,2,4–6, and developmental studies have demonstrated
homologies of mammalian middle ear ossicles with their reptilian pre-
cursors, including the malleus (5articular plus prearticular), incus
(5quadrate) and ectotympanic (5angular)7–9. In basal mammaliaforms,
such as Morganucodon, the post-dentary bones have greatly reduced but
still attach to the dentary, serving a dual function for hearing and feed-
ing2,4,5,10,11. The mandibular middle ear of Morganucodon12 is regarded as
the prototype that gives rise to the definitive mammalian middle ear
(DMME) in which the angular, articular plus prearticular, and quadrate
are strictly auditory structures and fully divorced from the feeding appar-
atus2,4. Incorporation of the lower jaw elements and the quadrate into the
middle ear on the cranium represents an innovative feature of mammals
and has been regarded as a classic example of gradual evolution in verte-
brates, a subject that has attracted enormous attention1–19. Conventional
research on the evolution of the mammalian middle ear has focused
primarily on detachment of the post-dentary bones2–4,10,11,14,16–18,20, in
which transitional changes are often inferred from grooves on the
medial surface of the dentary4,6 or from fragmentary specimens18. The
key questions still remain: what has happened, and how did it happen,
during the transference from the mandibular middle ear to the DMME?

In view of the middle ear from the new Cretaceous eutriconodont
mammal reported here,we hypothesize that the ossified Meckel’s cartilage
(OMC) serves as a stabilizing mechanism for the post-dentary bones
during their evolutionary departure from the dentary. We define the
transitional mammalian middle ear (TMME) as a distinct stage in the
evolution of the mammalian middle ear and characterize the transference
with a suite of morphological changes.

Mammalia Linnaeus, 1758
Eutriconodonta Kermack et al., 1973

Liaoconodon hui, gen. et sp. nov.

Etymology. Liao, the short form for Liaoning Province; conodon,
Latin, ‘cuspate tooth’, a common suffix for generic names in ‘trico-
nodonts’; hui, after Yaoming Hu, a student dedicated to the study of
Mesozoic mammals.
Holotype. IVPP (Institute of Vertebrate Paleontology and
Paleoanthropology, Beijing) V16051, a skeleton preserved on one slab
of laminated siltstone (Figs 1 and 2 and Supplementary Figs 1–6).
Locality and horizon. Xiao-tai-zi, La-ma-dong, Jianchang, Liaoning,
China; Jiufotang Formation. Early Cretaceous, Aptian, 120 Myr (ref.
21) (Supplementary Information part A).
Diagnosis. A medial-sized eutriconodont with a body length of
195 mm (from the tip of the rostrum to the hip) or 357 mm including
the tail (Fig. 1). Dental formula I3.C1.P2.M3/i2.c1.p2.m4, with
molariform teeth having three main cusps mesiodistally arranged
and laterally compressed, and a dentary lacking an angular process
and post-dentary trough. Differs from all known eutriconodonts in
having the lower incisors, canine and first premolariform proportionally
enlarged, similar in shape, and closely packed in space, and in having a
deep trench along the ventral border of the masseteric fossa. Further
differs from triconodontids in having the main cusp A/a distinctively
higher and more inflated than other cusps; from ‘jeholodentids’18,22 in
being larger and having relatively smaller (shorter) molariforms and a
different dental formula; from gobiconodotids12,23,24 in having fewer
molariforms and in lacking a proportionally enlarged first incisor and
the interlocking mechanism between successive lower molariforms;
from Repenomamus25,26 in being considerably smaller, having a different
dental formula and less inflated cusp A/a in molariforms; from ‘amphi-
lestids’ in having fewer molariforms and cheek teeth asymmetrical in
labial view. Phylogenetic analyses place Liaoconodon between tricono-
dontids and paraphyletic ‘jeholodentids’ (Supplementary Information
and Supplementary Fig. 8).

Description
The description focuses on the middle ear region (Fig, 2, Supplemen-
tary Information part B and Supplementary Figs 2–6). The mandibular
condyle is robust but not rounded. The glenoid fossa is well defined.
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Immediately medial to the glenoid fossa is the epitympanic recess. The
squamosal sulcus24 is a short and narrow valley between the postgle-
noid process and the paroccipital process (Fig. 2). The medial surface of
the dentary has the Meckelian groove that bifurcates posteriorly,
similar to that of Amphitherium4. The OMC16,17 is splint-like anteriorly
and thickened posteriorly with the posterior portion bending medially as
in other species16–18,27. The three-pronged ectotympanic (5angular)
abuts the malleus laterally and is similar to that of extant mammals in
embryonic stage9,20,28–31. Its anterior limb contacts the prearticular and
the posterior limb ends lateral to the malleo-incudal articulation. The
ventral limb of the ectotympanic (5the reflected lamina of the angular) is
crescent shaped and is less developed (shorter) than that in extant mam-
mals (Fig. 2), indicating that the ectotympanic can hold only the anterior
portion of the tympanic membrane (Figs 2 and 3). As in multitubercu-
lates32 and extant mammals33–35, the inner surface of the curved bone
bears the tympanic sulcus for attachment of the tympanic membrane.

The malleus consists of a long anterior process and a hook-shaped
body, homologous with the prearticular and the articular, respec-
tively2,4,7–9. In the medial view of the bone, a zigzag suture exists
between the two elements (Fig. 2). A longitudinal groove is present
in the anterior portion of the anterior process, perhaps for the passage
of the chorda tympani nerve; there is no foramen for the latter. The
body of the malleus is probably equivalent to the pars transversalis in
extant mammals14,33,34; it has the neck and the manubrial base but lacks
the manubrium. We consider the ventral portion of the malleus body
homologous with the retroarticular process of mammaliaforms2,10.11.
The ventromedial edge of the body is rugose, indicating attachment of
soft tissue in life, probably for a sizeable tensor tympani homologous

with the posterior pterygoid muscle36. On the posterodorsal corner of
the bone is a process that is absent on the malleus of extant mam-
mals33,35. The morphology and bone relationships show this process to
be most probably homologous with the surangular boss in advanced
cynodonts2,37. The lateral (ventral) surface of the malleus is flat and
smooth, suggesting contact with the tympanic membrane in life. The
incus is posterior to the malleus and free from the skull; it has a convex
articular facet for the malleus and a process presumably for articulation
with the stapes. The malleo-incudal articulation is hinge-like. The
lateral surface of the incus is smooth and even with the lateral surface
of the malleus if the bones are in articulation. Bone fragments at the
fenestra ovalis (vestibuli) may represent parts of the stapes, and, if true,
the stapes must be relatively massive.

The OMC as an ossicle stabilizer
The OMC in Yanoconodon, another eutriconodont from the Jehol Biota,
was interpreted as having a paedomorphic resemblance to the embry-
onic pattern of modern mammals18. The middle ear of Liaoconodon,
however, differs from that of Yanoconodon (Supplementary Infor-
mation). The bone relationships (Fig. 2) show that during the early
development of Liaoconodon the posterior end of the Meckel’s cartilage
must be separated from the rest of the cartilage, take the shape of the
malleus body and join the dermal goniale (prearticular) to form the
malleus; the rest of the cartilage became ossified at a later time but did
not fuse with ear ossicles. In extant mammals the goniale usually ossifies
earlier than other portions of the ossicles30,31 and has a profound local
influence upon endochondral ossification of the malleus29. Moreover,
the Meckel’s cartilage never fuses with the ectotympanic. These features
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Figure 1 | The skeleton of the new mammal Liaoconodon hui (dorsal view of
the holotype, IVPP V16051, Institute of Vertebrate Paleontology and
Paleoanthropology, Beijing). Abbreviations: as, astragalus; c1–7, first to
seventh cervical vertebrae; ca1–23, first to twenty-third caudal vertebrae; cc,
calcaneum; cn, coronoid; cp, carpals; db, dentary bone; l1–8, first to eighth
lumbar vertebrae (the posterior ones are damaged); lc, left clavicle; lh, left

humerus; li, left ilium; lr, left radius; ls, left scapula; lu, left ulna; mp,
metacarpals; mt, metatarsals; ph, phalanges; rc, right clavicle; rf, right femurs;
rfi, right fibular; rh, right humerus; ri, right ilium; rr, right radius; rs, right
scapula; rt, right tibia; ru, right ulna; s1–5, first to fifth sacral vertebrae; sk, skull;
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indicate that presence of the OMC in mammals16–18,23,27 may not be
interpreted as a simple paedomorphic feature.

It has been postulated that the Meckelian cartilage probably existed
during a transitional stage in the evolution of extant mammals, later
being replaced by the sphenomandibular ligament1,4,5, and that such a
ligament functions as a stabilizer for the detached ossicles4. Develop-
mental studies also predict a persisting or ossified Meckel’s cartilage in
the common ancestor of recent mammals14. Along the same line of
reasoning, we further hypothesize that during the evolution of mammals,
the OMC or a persistent Meckel’s cartilage functions as a stabilizing
mechanism for the ear ossicles departed from the dentary but not yet
supported by any cranial structure, as in the case of Liaoconodon (Fig. 3).
Because the ossicles hold the tympanic membrane, it is necessary for
them to be supported anteriorly so that the apparatus can function
properly for hearing. This stabilizing mechanism becomes unnecessary
when the ectotympanic fully suspends the tympanic membrane and the
ossicles are moored on the cranium in more advanced mammals. In view
of the new specimen, we think it inevitable to reinterpret the prearticular
in the post-dentary unit of Morganucodon11,12 as primarily the OMC
(Fig. 3 and Supplementary Information part C).

Although known only in a few eutriconodonts16–18,23 and symmetro-
donts17,27, the OMC or a persistent Meckel’s cartilage in adults can be
inferred from the Meckelian groove present in many early mammals
(Fig. 4 and Supplementary Fig. 8). A Meckel’s cartilage persisting in
adult individuals of mammals has been observed or inferred else-
where14,38–40. The sparse fossil record of the OMC is very probably
because of its loose attachment to the dentary16–18,23 so that preservation
of the OMC is rare, similar to the record of ear ossicles18,32,40. It is also
probable that the cartilage is not ossified; thus it left a contact groove on
the dentary but is not fossilized.

Instead of being a paedomorphic resemblance, an alternative hypo-
thesis is that the persistent Meckel’s cartilage in Mesozoic mammals,
along with features such as lack of the manubrium and a partial

ectotympanic, represents a phylogenetic stage in mammalian evolu-
tion, and that the embryonic pattern of modern mammals recapitu-
lates the phylogenetic changes.
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Figure 2 | Skull and ear ossicles of Liaoconodon hui (IVPP V16051).
a, b, Ventral view of the skull. c, Medial view of the dentary. d, e, Medial (dorsal)
and lateral (ventral) views of the ossicles of Liaoconodon. Dashed oval indicates
the estimated size of the tympanic membrane (actual shape could be more
complicated). f, g, Dorsal and ventral views of the ossicles of Ornithorhynchus
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Didelphis (modified after ref. 2). Ossicles are not on the same scale. The ear
ossicles of Liaoconodon differ from those of extant mammals in having at least
the following features: a long anterior process of the malleus wrapping around

the OMC, ossicles proportionally larger, a hinge-like malleo-incudal joint,
presence of the posterodorsal process of the malleus (boss of the surangular),
lack of the manubrium, the ectotympanic partly developed. Abbreviations: ap,
anterior process of malleus (prearticular); at, anterior process of the tympanic;
bs, boss of surangular; et, ectotympanic (angular); in, incus (quadrate); lpr, long
process of the incus; ma, body of malleus (articular); mb, manubrial base of
malleus (retroarticular process); mm, manubrium of malleus; pas, prearticular–
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(reflected lamina of angular).
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Figure 3 | Morphological transference of mammalian middle ear.
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The mammalian tympanic membrane
The origin of the mammalian tympanic membrane has been under
extensive discussion1,2,4,5,11,19,41–46 but still remains to be explained5.
Four hypotheses have been outlined for the possible location and
composition of the membrane in pre-mammalian synapsids, from
which the mammalian condition is derived: (1) in a postquadrate
location1; (2) in a post-dentary location2; (3) in both positions sepa-
rately44; or (4) 1 and 2 coexisting as a continuous tympanic mem-
brane4. The evidence from Liaoconodon supports hypothesis 4
(Fig. 4).

In Liaoconodon the crescent ectotympanic is insufficient to suspend
the tympanic membrane fully; the latter must be in contact with the
malleus and attached posteriorly to a cranial structure. The most feasible

cranial structure for attachment of the membrane is the posterior rim of
the epitympanic recess where the tympanohyal is situated17. There are
at least three reasons for this. First, such an attachment makes phylo-
genetic sense when compared with the condition in non-mammalian
therapsids that have a squamosal sulcus4. Second, it is consistent with
the condition of extant mammals in which the epitympanic recess is
immediately dorsal or dorsomedial to the tympanic membrane33–35.
Finally, developmental evidence shows that the membrane is supported
by the tympanohyal and the element of Spence before full development
of the ectotympanic43. This attachment is also consistent with the pos-
sibility that the posterior portion of the tympanic membrane is in
contact with the malleus and incus, as evidenced by the fact that the
lateral surfaces of the two ossicles are smooth and aligned even when the
ossicles are in articulation.

The partly developed ectotympanic, absence of the manubrium of
the malleus and lack of a fully suspended tympanic membrane in
Liaoconodon echo the observations from developmental studies that
phylogenetically older portions of the ossicles develop earlier than
those that represent more recent evolutionary inventions31,33.
Moreover, molecular–developmental studies also show that the man-
ubrium, the processus brevis, the ectotympanic and tympanic mem-
brane exhibit an interdependent relationship in the mammalian
developmental programme15,19. Full development of the ectotympanic
and the manubrium implies that they are probably neomorphs of
mammals as co-members of an advanced complex adaptation late
in therapsid evolution towards mammals4,43.

The TMME
As the first unambiguous paleontological evidence, the middle ear of
Liaoconodon corroborates the Reichert–Gaupp theory on the homo-
logy of the mammalian ear ossicles7,8 as well as the hypothesis on the
evolution of the mammalian middle ear2,4. The ear morphology of
Liaoconodon represents a transitional stage in the evolution of mam-
malian middle ears regardless of how many times the DMME
evolved4,18,41. The TMME can be characterized by several features:
the articular, prearticular and angular lose their direct contact with
the dentary (thus called as the malleus and ectotympanic) and are
supported anteriorly by a persistent Meckel’s cartilage, but not by
cranial structures, in adult; the malleo-incudal articulation is hinge-
like and lost its primary function for jaw suspension; all ear ossicles are
primarily auditory structures but are not completely free from the
feeding effect; the tympanic membrane is not fully suspended by
the ectotympanic, and the manubrium of the malleus has not
developed (Figs 2 and 3).

A key issue in the study of the evolution of the mammalian middle ear
focuses on the detachment of the post-dentary bones3,4,17,18,20, which
primarily involves two events: separation of the ossicles from the dentary
and degeneration of the Meckel’s cartilage in adults18. The ear of
Liaoconodon demonstrates that the transference from the mandibular
middle ear to the TMME and then to the DMME involves complex
morphological changes (Fig. 3 and Supplementary Information part
C). Because of these changes, the TMME must be more efficient in
airborne sound hearing than the mandibular middle ear, because the
ossicles are proportionally smaller, the incus has more freedom and the
other ossicles are separated from the dentary. In addition, the loose
attachment of the OMC in the dentary, the sutured relationship of the
OMC with the ossicles and the possible flexibility of the persistent
Meckel’s cartilage further enhance hearing by decoupling hearing from
feeding. On the other hand, the hinged malleo-incudal joint, lack of the
manubrium as a level arm in the ossicle chain and incomplete suspen-
sion of the tympanic membrane indicate that the middle ear of
Liaoconodon is not so efficient as in extant mammals.

METHODS SUMMARY
Supplementary Information part F provides a full description of the methods.
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