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ABSTRACT The Qinglongquan site, China, includes materials from the Neolithic Qujialing (3000–2600 BC) and Shijiahe
(2600–2200 BC) periods, and lies within the Sui-Zao Corridor that connects the Nanyang Basin in the north
and the Hanjiang River Plain in the south. Previous research suggested a dietary shift from rice-based to
millet-based agriculture between the Qujialing and Shijiehe periods at this site. The reason for this dietary shift
is still unclear, and it is possible because of immigration into the region by people who already had a mainly
C4-millet-based diet (i.e. from Northern China). In this study, we examine the carbon (δ13C) and nitrogen
(δ15N) results and present sulfur (δ34S) isotope analyses of human (n=27) and animal (n=36) samples to test
the hypothesis of whether this dietary shift was due to migration. The δ34S values of the Qujialing humans
ranged from 5.5‰ to 8.1‰ [average 6.5‰±1.0 (n=7)], and the δ34S values of the Shijiahe humans ranged
from 4.1‰ to 7.4‰ [average 5.8‰±0.9 (n=18)]. Because these values overlapped and were similar to the
animal δ34S results [4.3‰ to 8.8‰, average of 6.6 ± 1.3‰ (n=31)], no evidence of migration was found for the
humans with the different diets at the Qinglongquan site. Copyright © 2015 John Wiley & Sons, Ltd.
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Introduction

Although a dichotomy between the primitive rice agri-
culture in southern China and the primitive millet agri-
culture (foxtail millet and common millet) in Northern
China during the Neolithic period is widely believed
(Chen, 2005; Ren, 2005; Barton et al., 2009; Zhao,

2011; Liu et al., 2012), recent studies based on archae-
ological findings, archaeobotanical analysis and stable
isotopic analysis have indicated that a mixed agricul-
tural system of rice and millet was present from 5000
BC between the Yangtze River valley and the Yellow
River valley (Hu et al., 2006; Lanehart et al., 2008; Fu
et al., 2010; Lanehart et al., 2011; Guo et al., 2011;
Zhang et al., 2014). This dynamic system was then
more firmly established from 3500 to 2000 BC in the
larger region including: Shandong, Henan, Hubei,
Shaanxi, Anhui and Jiangsu Provinces. It has been
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suggested that this combined rice and millet agriculture
system played an important role in the formation of
Chinese civilization (Zhao, 2011).
The Sui-Zao Corridor within the Hanjiang River

valley (Figure 1) is widely believed to be an epicentre
for cultural interaction between the Yangtze River val-
ley and the Yellow River valley (Ren, 1989; Wang J.,
1997; Su, 1999; Xu, 2003; Ma & Yang, 2007). The
Qinglongquan site (Figure 1) is located in Yunxian
County, Hubei Province and covers three different
archaeological periods: the Yangshao Culture
(3500–3000 BC), the Qujialing Culture (3000–2600
BC) and the Shijiahe Culture (2600–2200 BC). Large
quantities of archaeological remains with different cul-
tural styles were found, suggesting the frequent occur-
rence of cultural interaction (The Institute of
Archaeology, Chinese Academy of Social Sciences,
1991; Chen et al., 2010). In particular, the discovery
of both rice and millet grains at the site implies that
both crops were cultivated simultaneously (The Insti-
tute of Archaeology, Chinese Academy of Social Sci-
ences, 1991). The rice-based Qujialing Culture,
dominant in the middle Yangtze River region and fa-
mous for its unique ceramic balls and painted spindle
whorls, expanded northwards around 3000 BC (Zheng,
1983; Fan, 1998; Sun, 2000; Meng, 2011) and con-
trolled large areas in Northern China such as the
Nanyang basin in Henan Province, Hubei Province,
Hunan Province and some parts in Shaanxi Province

(State Administration of Cultural Heritage, 1991; Fan,
2000). However, the situation was completely reversed
during the Shijiahe period (2600–2200 BC). The
Longshan Culture (3000–2000 BC) based on millet ag-
riculture in the central plains along the middle and
lower Yellow River valley began to move southwards
and occupied the middle reach of the Yangtze River
(Wang H., 1997), which was evidenced by the findings
of large quantities of pottery with the surface ornamen-
tation, colour and production technology of the
Longshan Culture at the Qinglongquan site (Ma &
Yang, 2007).
At this same time, the cultural transition between the

rice-based and millet-based cultures was also reflected
by the dietary change of human and animals through
time. Our previous study (Guo et al., 2011) at the
Qinglongquan site showed that the carbon isotope
values of humans (�15.7±0.3‰, n=7) and pigs
(�15.5±1.2‰, n=6) during the Qujialing Culture pe-
riod (3000–2600 BC) increased to �14.2±0.3‰
(n=17) and �13.2±0.7‰ (n=5), respectively, during
the Shijiahe Culture period (2600–2200 BC). This iso-
topic variation of humans and pigs strongly indicates
that the influence of the millet-based culture and die-
tary adaptations was enhanced through time because
of the strong influence of the Longshan Culture (Guo
et al., 2011). However, this dietary change of the
humans could also be caused by the movement of
humans from the north (who already had a millet-based

Figure 1. Site map of the Qinglongquan site.
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economy) to this site (The Henan Provincial Institute
Archaeology, The Henan Group of The Archaeologi-
cal Team, 1972; The Henan Provincial Institute Ar-
chaeology, The Henan Group of The Archaeological
Team, 1989; Zhou, 1992; Li, 2000; Guo, 2004). To
test this hypothesis, we analysed additional human
and animal samples from the Qinglongquan site, and
in particular, we employed sulfur isotopic analysis, as
it has been shown to be a potential indicator of human
migration (e.g. Nehlich et al., 2012; Nehlich, 2015).

Stable carbon, nitrogen and sulfur isotope
analysis

Carbon and nitrogen stable isotope analysis of human
and animal bone collagen from archaeological sites
has become an established method to reconstruct past
diets in China (e.g. Zhang et al., 2003; Pechenkina
et al., 2005; Hu et al., 2009a; Guo et al., 2011). The tech-
nique and different applications are well described in
numerous publications (e.g. DeNiro & Epstein, 1978;
van der Merwe & Vogel, 1978; DeNiro, 1985; Larsen,
1997; Richards, 2002; Choy et al., 2010; Nehlich et al.,
2012; Quintelier et al., 2014; Schoeninger, 2014), and
the topic has been reviewed in detail by Lee-Thorp
(2008). In general, carbon isotope values can clearly dis-
tinguish the consumption between C4 and C3 diets
(Webb et al., 2013; Hou et al., 2013). In China, the car-
bon isotope values of humans and animals can be used
to evaluate the consumption of C3 rice-based foods
and C4 millet-based foods (Hu et al., 2007; Barton
et al., 2009; Lanehart et al., 2011). Nitrogen isotopic
values in collagen increase by 3–5‰ with increasing
trophic level, and this is quite useful for differentiating
between animal-based and plant-based diets as well as
the consumption of the terrestrial foods from aquatic
ecosystems (freshwater or marine) (Ambrose, 1991;
Arcagni et al., 2013). Unlike carbon and nitrogen, the
use of sulfur stable isotope analysis in bone (and den-
tine) collagen has only been developed in recent years
because of the advancement in the ability to measuring
the sulfur isotope values in collagen using isotope ratio
mass spectrometer (Richards et al., 2001; Hedges et al.,
2005; Craig et al., 2006; Privat et al., 2007; Pellegrini &
Longinelli, 2008; Fornander et al., 2008).
Plants receive sulfate not only from the weathering

of local bedrock through their roots but also from the
atmosphere, from droplets from sea evaporation or
from precipitation containing dissolved sulfur gases
(H2SO4, H2S and SO2). In areas where these various
sulfur sources have significantly different isotope

sources, the uptake of sulfur by plants will be an aver-
age of the individual sources (Linderholm & Kjellström,
2011). It has been demonstrated that fractionation of
sulfur isotopes within plant ecosystems is small, with
δ34S values typically 1.5‰ lower than environmental
sulfate (Krouse, 1977; Winner et al., 1978; Case &
Krouse, 1980). Feeding experiments show that for an
adequate protein C3 diet, the δ34S values in herbivo-
rous mammals were shifted by �1‰ (Richards et al.,
2003a). The range of sulfur isotope values in terrestrial
ecosystems is relatively large (�10‰ to +20‰) and
even wider in freshwater system (�22‰ to +20‰) be-
cause of the action of anaerobic bacteria in the sedi-
ments of rivers and lakes (Linderholm & Kjellström,
2011), and the mean sulfur isotope ratio of oceanic sea-
water sulfate is +20.3‰ (Nehlich, 2015). Thus, sulfur
isotope analysis can have the advantage of being able
to differentiate between the consumption of terrestrial
and aquatic (marine or freshwater) resources by
humans or animals (Hu et al., 2009b; Nehlich, 2015).
Sulfur isotope analysis also holds potential to investi-

gate human residence and mobility. Because of the di-
rect input of sulfur with local bedrock to bone
collagen and its relatively low turnover rate (≥10years,
depending on the bone element sampled), the variation
of δ34S values among humans can be discerned if signif-
icant differences exist in local geology between the
birth location and the later residence location (Bol &
Pflieger, 2002; Vika, 2009). For these studies, the
δ34S values of animals are used to determine the local
isotopic baseline δ34S values.

Materials and methods

In total, 31 human remains as well as 53 animal bones
were selected for stable isotope analysis (Table 1),
some of which had already been reported in the previ-
ous study (Guo et al., 2011). One sample was taken
from each human skeleton, and in sample selection,
preference was given to the femur.
Bone collagen was extracted following the proce-

dures described by Richards & Hedges (1999) with
the addition of an ultrafiltration step (Brown et al.,
1988). Approximately 300–500mg of bone was sam-
pled and the surface contaminants were removed me-
chanically. The bone samples were demineralized in
0.5M HCl at 5 °C and refreshed every 2 or 3days until
the bone samples were demineralized. Then, the sam-
ples were rinsed in deionized water three times and
gelatinized at 70 °C in 0.001M HCl for 48h. After
that, the resulting solution was first filtered to remove
insoluble materials and then filtered again to remove
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Table 1. Information on the bone samples and isotopic data

Sample ID Description Culture period
Collagen

(%) C (%) N (%) S (%)
δ13C
(‰)

δ15N
(‰)

δ34S
(‰) C : N C : S N : S

M155* Human Qujialing culture 3.5 44.5 16.3 0.2 �15.3 9.9 6.5 3.2 628.1 197.5
M190* Human Qujialing culture 4.6 43.8 16.5 0.2 �15.9 9.2 5.5 3.1 635.2 205.3
M157E* Human Qujialing culture 2.2 44.0 16.6 0.2 �16.5 10.1 7.0 3.1 613.8 199.0
M79* Human Qujialing culture 5.4 44.6 17.0 0.2 �14.1 6.8 5.5 3.1 625.3 204.0
M184* Human Qujialing culture 2.0 43.9 16.2 0.2 �16.1 9.2 8.1 3.2 533.1 169.2
M157W* Human Qujialing culture 6.2 44.6 16.8 0.2 �15.5 9.8 5.7 3.1 757.2 244.9
M162* Human Qujialing culture 2.2 43.9 15.8 0.2 �16.7 9.9 7.0 3.2 547.4 169.0
M160 Human Qujialing culture NA
M132* Human Shijiahe culture 4.5 44.8 16.6 0.2 �12.9 8.5 6.6 3.2 625.9 198.7
M69* Human Shijiahe culture 0.9 44.6 16.6 0.2 �12.4 9.9 5.5 3.1 672.4 214.9
M110A* Human Shijiahe culture 5.4 45.1 16.4 0.2 �13.1 9.2 5.8 3.2 575.8 179.0
M78* Human Shijiahe culture 3.9 44.7 16.9 0.2 �14.7 8.2 6.0 3.1 624.2 202.5
M67* Human Shijiahe culture 3.0 43.9 15.8 0.2 �12.9 9.4 5.2 3.3 577.1 177.9
M127* Human Shijiahe culture 1.4 43.9 15.5 0.2 �13.7 8.2 NA 3.3 NA NA
M187* Human Shijiahe culture 3.6 44.0 15.9 0.2 �15.3 9.2 7.4 3.2 596.1 184.9
M110B* Human Shijiahe culture 0.3 44.0 16.7 0.2 �14.2 9.6 6.5 3.1 630.8 205.5
M133* Human Shijiahe culture 3.7 42.9 15.1 0.2 �14.6 6.6 4.1 3.3 575.4 173.2
M139* Human Shijiahe culture 2.2 43.6 16.0 0.2 �15.4 9.7 6.6 3.2 635.5 199.6
M128* Human Shijiahe culture 4.0 43.9 16.6 0.2 �13.6 8.9 5.2 3.1 628.8 204.4
M145* Human Shijiahe culture 4.5 43.6 16.6 0.2 �15.9 10.8 4.7 3.1 653.0 212.6
M158* Human Shijiahe culture 5.1 44.5 16.8 0.2 �14.0 9.5 6.9 3.1 595.8 193.4
M124* Human Shijiahe culture 3.1 43.6 16.2 0.2 �14.3 6.7 5.1 3.1 645.5 205.3
M118* Human Shijiahe culture 1.8 44.4 16.1 0.2 �15.7 9.2 6.9 3.2 713.7 221.1
M98* Human Shijiahe culture 1.6 44.0 15.9 0.2 �15.4 7.1 5.9 3.2 570.1 176.0
M148* Human Shijiahe culture 0.4 45.4 17.0 0.2 �13.0 10.4 6.2 3.1 579.1 186.0
M107 Human Shijiahe culture NA
M42 Human Shijiahe culture NA
M40 Human Shijiahe culture NA
M172 Human Shijiahe culture 1.0 43.5 15.7 0.8 �12.7 9.6 6.3 3.2 140.2 43.3
M189 Human Shijiahe culture 4.1 43.6 15.9 0.2 �13.9 8.4 5.6 3.2 509.8 159.1
TN1E2(2):19 Human Shijiahe culture 3.1 43.4 15.7 0.2 �17.6 8.7 4.2 3.2 625.0 193.6
TN1W2(10):25 Pig Yangshao culture 0.7 42.6 15.3 0.2 �17.2 7.1 4.3 3.3 719.7 221.3
TN1E1(10):8 Pig Yangshao culture 3.3 43.8 15.3 0.2 �19.9 3.9 5.9 3.4 580.8 173.5
TN1W2(9):27 Pig Yangshao culture 0.8 44.0 14.9 NA �19.0 5.3 NA 3.4 NA NA
M162* Pig Qujialing culture 0.9 43.3 15.4 0.2 �20.8 8.9 6.5 3.3 594.6 181.4
H478* Pig Qujialing culture 1.7 44.4 15.3 0.2 �17.5 7.8 7.4 3.4 629.5 186.5
H667* Pig Qujialing culture 2.7 44.6 16.1 0.2 �17.4 7.8 7.5 3.2 588.9 182.6
H163B* Pig Qujialing culture 0.9 43.7 16.3 NA �13.9 7.4 NA 3.1 NA NA
H463A* Pig Qujialing culture 3.8 44.3 15.6 0.2 �13.9 7.1 7.1 3.3 637.8 192.7
H595* Pig Qujialing culture 2.3 44.5 16.0 0.2 �13.4 7.9 7.6 3.3 534.7 164.8
H463B* Pig Qujialing culture 3.8 44.6 16.5 0.2 �11.7 7.5 8.2 3.2 508.6 161.2
TN1E1(6):4 Pig Qujialing culture 3.2 43.4 15.7 0.2 �16.9 5.4 6.8 3.2 561.3 173.9
TN1W1(5):11 Pig Qujialing culture 0.8 43.1 15.6 NA �17.7 7.1 NA 3.2 NA NA
TN1W2(7):23 Pig Qujialing culture 3.6 42.7 15.5 0.2 �19.9 3.5 5.6 3.2 546.9 170.2
TN1W2(8):26 Pig Qujialing culture 0.7 42.9 15.0 0.2 �14.1 5.6 6.0 3.3 517.8 155.4
TN1W2(6):24 Pig Qujialing culture 1.4 43.0 15.7 0.2 �21.7 4.5 6.9 3.2 561.4 175.9
TN1E2(6):18 Pig Qujialing culture 3.2 42.9 15.7 0.2 �18.7 4.4 6.2 3.2 574.6 179.9
TN1E1(5):2 Pig Qujialing culture 0.2 45.1 13.8 NA �17.4 6.5 NA 3.9 NA NA
TN1E1(7):3 Pig Qujialing culture 0.9 43.3 15.3 0.2 �14.6 6.1 6.8 3.3 510.7 154.2
TN1E1(4):5 Pig Qujialing culture 0.3 43.0 14.9 0.2 �21.1 4.0 4.5 3.4 687.3 203.4
H597 Pig Qujialing culture NA
H131 Pig Qujialing culture NA
H163A Pig Qujialing culture NA
H367 Pig Qujialing culture NA
M155A Pig Qujialing culture NA
M155B Pig Qujialing culture NA
M148B* Pig Shijiahe culture 0.3 43.3 15.2 NA �12.0 7.6 NA 3.3 NA NA
H590* Pig Shijiahe culture 1.6 44.1 15.4 0.2 �13.7 6.1 5.8 3.3 515.1 154.7
H576* Pig Shijiahe culture 2.9 44.4 16.1 0.3 �16.3 4.7 8.0 3.2 416.9 129.2
H579* Pig Shijiahe culture 2.0 43.8 15.2 0.2 �13.0 8.0 8.2 3.4 486.3 144.9
H546B* Pig Shijiahe culture 2.3 44.6 16.2 0.3 �11.0 8.3 7.4 3.2 459.5 142.9
H578* Pig Shijiahe culture 3.0 44.6 15.8 0.2 �13.2 8.2 8.1 3.3 565.7 171.4
TN1E1(2):7 Pig Shijiahe culture 3.5 43.3 15.4 0.2 �12.2 6.1 7.1 3.3 598.8 182.4

(Continues)

88 Y. Guo et al.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 28: 85–94 (2018)



contaminants <30kDa by using Millipore Amicon
Ultra-4 centrifugal filters. Finally, the residues were
freeze-dried for 48h. After the extracted collagen was
weighed, the collagen content ratio was calculated
(the weight of the collagen was divided by the original
weight of the bone sample).
Approximately 0.5-mg collagen was analysed for car-

bon and nitrogen isotopic measurements. Samples were
combusted and analysed in a Flash EA 1112 coupled to
a Delta XP (Thermo-Finnigan). Approximately 10mg
of bone collagen was weighed out and mixed with
1mg of V2O5 to catalyse the combustion and reduce
variability (Nehlich et al., 2011). The material was then
combusted in a Heka EuroVector elemental analyser
(HeKaTech) and analysed in a Thermo-Finnigan Delta
V plus. Stable isotope ratios are expressed relative to the
VPDB (C), AIR (N) and VCDT (S), respectively. Mea-
surement errors on the δ13C and δ15N are ±0.2‰, and
±0.5‰ for the δ34S measurements, respectively. The
isotopic data, collagen quality indicators, and some in-
formation on the samples individuals were listed in
Table 1 for both human and animal bones.

Results and discussion

Bone collagen preservation

Except for four samples (M160, M107, M42 and M40),
the humans (n=27) had atomic C :N ratios within the

acceptable range from 2.9 to 3.6 (DeNiro, 1985; van
Klinken, 1999). Four contained low collagen by weight
(<1%), which indicated that the majority of bone col-
lagen had decomposed during burial. There were also
36 acceptable samples out of 53 animal bone samples
in total. The sulfur content of the human and animal
bone collagen met the accepted range between
0.15% and 0.35% (Nehlich & Richards, 2009) except
for the M172 human sample. The atomic C :S and
atomic N :S ratios also met the quality criteria of
600±300 and 200±100, respectively, except for
M172 (Nehlich & Richards, 2009).

Carbon and nitrogen isotope analysis of humans and
animals from the Qinglongquan site

The δ13C and δ15N values of all samples from the
Qinglongquan site are plotted in Figure 2. The herbi-
vores, including one sheep/goat and one deer, have a
mean δ15N value of 3.9±0.1‰ as expected for herbi-
vores from this temperate inland region (Richards &
Hedges, 2003b). Their mean δ13C value
(�20.5±1.4‰, n=2) suggests that C3 plants generally
dominated their diets. Seven unidentified mammals,
likely herbivores have a large range of δ13C values from
�21.7‰ to �13.1‰ with the mean value of
�17.0±1.3‰, suggesting that they have quite differ-
ent diet resources including both C3 and C4 deprived
foods. Their δ15N data are from 4.1‰ to 7.0‰ with

Table 1. (Continued)

Sample ID Description Culture period
Collagen

(%) C (%) N (%) S (%)
δ13C
(‰)

δ15N
(‰)

δ34S
(‰) C : N C : S N : S

TN1W1(3):10 Pig Shijiahe culture 2.7 43.6 15.3 0.2 �20.5 3.9 6.4 3.3 492.7 147.8
M141 Pig Shijiahe culture NA
H634 Pig Shijiahe culture NA
H546A Pig Shijiahe culture NA
M127 Pig Shijiahe culture NA
M135 Pig Shijiahe culture NA
M148A Suidae Shijiahe culture NA
TN1W2(5):22 Sheep/Goat Qujialing culture 1.1 43.0 15.6 0.2 �21.5 3.9 3.3 3.2 593.4 185.0
H163C Dog Qujialing culture NA
H28 Dog Shijiahe culture 3.5 44.2 15.4 0.2 �19.1 6.5 6.9 3.4 499.7 149.0
TN1E2(10):21 Deer Yangshao culture NA
TN1W1(6):12 Deer Qujialing culture NA
TN1W1:2 Deer Shijiahe culture 1.0 43.2 15.4 0.2 �19.5 3.8 5.9 3.3 576.0 176.5
TN1W1(7):13 Unidentified animal Yangshao culture 1.1 43.1 15.7 0.2 �21.3 4.9 4.7 3.2 555.0 172.9
TN1E2(11):16 Unidentified animal Yangshao culture 3.4 43.4 15.5 0.2 �13.1 6.1 6.4 3.3 486.5 149.0
TN1E1(8):6 Unidentified animal Yangshao culture 1.6 43.8 15.1 0.3 �14.3 6.4 8.8 3.4 431.4 127.0
TN1E2(9):15 Unidentified animal Yangshao culture 2.2 42.1 15.0 0.2 �21.7 4.5 7.9 3.3 480.2 146.8
TN1E1(9):9 Unidentified animal Yangshao culture 2.2 43.7 15.0 0.2 �16.1 6.0 7.4 3.4 496.3 146.1
TN1E2(8):20 Unidentified animal Qujialing culture 2.8 43.4 15.6 0.2 �15.1 4.1 7.5 3.2 525.9 162.1
TN1E2(5):14 Unidentified animal Qujialing culture NA
TN1E2(3):17 Unidentified animal Shijiahe culture 3.1 43.0 15.7 0.2 �17.4 7.0 4.8 3.2 556.8 173.9

NA, not applicable.
*The δ13C and δ15N values of these samples are published in 2011.
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the mean value of 5.6±0.4‰, located in the expected
range for herbivores.
The δ13C value of a single dog is �19.1‰, indicat-

ing the major input was C3 foods. Its δ15N value
(6.5‰) is 2.7‰ more enriched than the mean value
of herbivores, suggesting this dog might have had a
large amount of animal protein as expected for an om-
nivore (DeNiro & Epstein, 1978; Hedges & Reynard,
2007).
The δ13C values of pigs range widely from

�11.0‰ to �21.7‰ (Table 1, Figure 2) suggesting
the consumption of both C3-based and C4-based
foods. The mean δ13C values (�16.2±3.3‰, n=26)
of the pigs are significantly 13C-enriched compared
with other animals including deer, sheep/goat and
dog (independent t-test, t=3.88, p=0.008<0.05),
which may relate to human intervention in their feed-
ing strategy with the use of C4 plants (Hu et al.,
2009a). A relatively wide range (5.4‰) of δ15N values
is seen in the pigs. The large variation in pig δ13C and
δ15N values may be interpreted as the disproportional
consumption of C4-based foods (Chen et al., 2012) or
the coexistence of wild boars and domestic pigs in
this site (Luo et al., 2009), which will be discussed fur-
ther. The exception is sample M162, with the highest
δ15N value (8.9‰) and extremely low δ13C value
(�20.8‰), strongly implying that this specimen
might have a different feeding strategy or was not lo-
cal. More detailed analysis of this sample combined
with sulfur isotope analysis will be discussed in the
succeeding text.
Many of the human carbon and nitrogen data were

previously published by Guo et al. (2011), and demon-
strated that the diet was a mix of C3 and C4 foods. The
additional humans presented here in this study also
have this pattern.

Sulfur isotope analysis

In general, the sulfur isotope values of the terrestrial an-
imals, including pig, dog, deer, sheep/goat and uniden-
tified animals, have δ34S values ranging from 3.3‰ to
8.8‰, with an average of 6.6±1.3‰ (n=32) (Table 1;
Figure 3). However, there is substantial isotopic varia-
tion among the species. The average δ34S value of the
herbivores is 4.6±1.8‰ (n=2) whilst that of the pigs
is higher [6.7±1.1‰; (n=22)]. The δ34S value of the
single sheep/goat (3.3‰) is considerably different from
the other fauna, and we have excluded it from the her-
bivore δ34S isotopic baseline in the following discus-
sions. Although the animals date to three cultural
periods, no significant difference in δ34S values among
animals through time was observed (K independent
samples test, p=0.832>0.05). This relatively small
isotopic variance of these terrestrial animals creates a
good opportunity for us to set up the local isotope
baseline, aiming to differentiate human movements.
The range of human δ34S values is between 4.1‰

and 8.1‰ with an average of 6.0‰±1.0 (n=25)
(Table 1; Figure 3). It is depleted by an average of
0.7‰, compared with that of the terrestrial animals
(6.7±0.2‰, n=31). Considering that the fractionation
of sulfur isotopes between trophic levels is ≈�1‰
(McCutchan et al., 2003), we confirm that these herbi-
vores played a key role in human diet at this site.
The small range of human sulfur isotopic data also

reveals no significant consumption of freshwater fish
(also indicated by the δ15N values). However, without
δ34S values of local freshwater fish, we cannot confirm
this, and it is also plausible that no significant differ-
ence of δ34S values between human individuals would
be expected, because there might be considerable over-

Figure 2. Plot of δ13C and δ15N values of bone collagen of humans and
animals. QJL, Qujialing; SJH, Shijiahe; YS, Yangshao.

Figure 3. Plot of δ34S values of humans and animals from the
Qinglongquan site.
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lap between the δ34S ranges of fish and terrestrial ani-
mals (Privat et al., 2007; Nehlich et al., 2010).
The δ34S value of the M162 pig sample that has

different carbon (�20.8‰) and nitrogen (8.9‰) iso-
tope values is similar to the other pigs at the
Qinglongquan site. This result indicates that this pig
was not a migrant but that it had a very different diet
compared with the other pigs at the site. One possible
reason for this is that this M162 pig was reared on a
unique diet specifically for ritual sacrifice (Craig
et al., 2010; Chen et al., 2012).

Change of human and animal sulfur values between
periods

In our previous study (Guo et al., 2011), dietary shifts of
both humans and pigs to C4-based foods were found at
the Qinglongquan site between the Qujialing to
Shijiahe periods. This diet shift was accounted for by
the movement southwards by millet-based northern
Longshan Culture (Guo et al., 2011). Did a potential
human migration also occur during this cultural inter-
action? If we compare the sulfur isotope values of local
animals as a reference to the human values in different
periods, it can give us more clues about possible human
migration at the Qinglongquan site.
Because all of the animals measured for δ34S in this

study could all have contributed to human diet as
discussed previously, their δ34S values can be used as
local geological signals. The values of all animals range
from 4.3‰ to 8.8‰, averaging 6.7±1.2‰ (n=31)
(Table 1, Figure 4). Because there is no significant dif-
ference of animal sulfur isotope data between the
Qujialing and Shijiahe periods (t=0.241,
p=0.812>0.05), although the pigs obtained more mil-
let, the sulfur values of all the aforementioned animals
are used here to set up the local baseline to understand
the human movements in different periods.
The sulfur values of the Qujialing humans range from

5.5‰ to 8.1‰, averaging 6.5‰±1.0 (n=7) (Table 1,
Figure 4). Based on an independent t-test, there is no
significant difference between the Qujialing human and
local animals (t=�0.544, p=0.590>0.05), which indi-
cates that most Qujialing humans were locals. The values
of the Shijiahe humans range from 4.1‰ to 7.4‰, aver-
aging 5.8‰±0.9 (n=18) (Table 1, Figure 4). Although
the mean δ34S value of the Shijiahe humans is lower than
those of the Qujialing humans and the local animals and
shows significant difference from the local animals by
statistical analysis (independent t-test, t=�2.888,
p=0.006<0.05), the differences are actually less than
1‰ and too small to result from migration. Furthermore,

an independent t-test shows no difference between the
Qujialing and the Shijiahe human δ34S values
(t=1.591, p=0.125>0.05), which also suggests that
the Shijiahe humans were not immigrants. Although
the archaeological evidence suggests cultural interac-
tions were occurring between northern and southern
Neolithic cultures during the Shijiahe period at the
Qinglongquan site, our isotopic results do not support
the migration hypothesis at this time. Thus, this mixing
of cultural characteristic might have been the result of
trade or the transmission of ideas, or it is possible that mi-
gration was indeed occurring but that we were not able
to detect it with this form of δ34S analysis.

Relationship between diet variation and human
migration

Increasingly, research suggests that human diet varied
to some extent during the Chinese Neolithic. At sites
like Guowan and Liangchenzhen, rice was found to
be an increasingly important part of the diet (Lanehart
et al., 2008; Fu et al., 2010; Lanehart et al., 2011). How-
ever, many questions still remain about this period.
What events and factors triggered these radical shifts
in diet and were they related to human movements at
the sites? Additional research aimed at exploring these
questions will provide a better understanding of dietary
variation, cultural development and interactions and
lead to a clearer picture of the foundation of Chinese
civilization. Unfortunately, the study of human migra-
tion and how it influences cultural transition in Neo-
lithic China is rarely systematically studied. We hope
that the results presented here will encourage more re-
search using sulfur and strontium stable isotope ratios
in bones and teeth to detect migration patterns in ar-
chaeological sites from across China.

Figure 4. Box plots of the sulfur isotope values of animals and humans
from the two time periods. QJL, Qujialing; SJH, Shijiahe.
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Conclusions

Carbon, nitrogen and sulfur isotope analysis of humans
and associated animals from the Qinglongquan site in-
dicates that the humans most likely obtained a substan-
tial portion of their protein from a terrestrial
ecosystem. No large differences are found among the
humans from the two time periods and the local animal
sulfur values at this site suggesting that the human pop-
ulations were probably not migrants to the site. Whilst
we did not identify typical migrants, this study en-
hances our understanding of the social and dietary
complexity during the late Neolithic period. Finally,
we hope that this research will spur additional studies
using sulfur isotope at sites across China in order to
better understand the relationships between human
diet and cultural interactions during the Neolithic.
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