KMS Institute of Vertebrate Paleontology and Paleoanthropology
Semantic segmentation of vertebrate microfossils from computed tomography data using a deep learning approach | |
Hou, Yemao1,2,3; Canul-Ku, Mario4; Cui, Xindong2,3,5; Hasimoto-Beltran, Rogelio4; Zhu, Min2,3,5 | |
2021-10-22 | |
发表期刊 | JOURNAL OF MICROPALAEONTOLOGY |
ISSN | 0262-821X |
卷号 | 40期号:2页码:163-173 |
摘要 | Vertebrate microfossils have broad applications in evolutionary biology and stratigraphy research areas such as the evolution of hard tissues and stratigraphic correlation. Classification is one of the basic tasks of vertebrate microfossil studies. With the development of techniques for virtual paleontology, vertebrate microfossils can be classified efficiently based on 3D volumes. The semantic segmentation of different fossils and their classes from CT data is a crucial step in the reconstruction of their 3D volumes. Traditional segmentation methods adopt thresholding combined with manual labeling, which is a time-consuming process. Our study proposes a deep-learning-based (DL-based) semantic segmentation method for vertebrate microfossils from CT data. To assess the performance of the method, we conducted extensive experiments on nearly 500 fish microfossils. The results show that the intersection over union (IoU) performance metric arrived at least 94.39 %, meeting the semantic segmentation requirements of paleontologists. We expect that the DL-based method could also be applied to other fossils from CT data with good performance. |
DOI | 10.5194/jm-40-163-2021 |
关键词[WOS] | VIRTUAL WORLD ; IMAGE |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Chinese Academy of Sciences[XDB26000000] ; Chinese Academy of Sciences[XDA19050102] ; Chinese Academy of Sciences[QYZDJ-SSW-DQC002] ; National Natural Science Foundation of China[42130209] |
WOS研究方向 | Paleontology |
WOS类目 | Paleontology |
WOS记录号 | WOS:000710814100001 |
出版者 | COPERNICUS GESELLSCHAFT MBH |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.205/handle/311034/19053 |
专题 | 中科院古脊椎所(2000年以后) |
通讯作者 | Hasimoto-Beltran, Rogelio; Zhu, Min |
作者单位 | 1.Xidian Univ, Sch Life Sci & Technol, Xian 710071, Peoples R China 2.Chinese Acad Sci, Key Lab Vertebrate Evolut & Human Origins, Inst Vertebrate Paleontol & Paleoanthropol, Beijing 100044, Peoples R China 3.CAS Ctr Excellence Life & Paleoenvironm, Beijing 100044, Peoples R China 4.Ctr Invest Matemat CIMAT, Guanajuato 36023, Mexico 5.Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Hou, Yemao,Canul-Ku, Mario,Cui, Xindong,et al. Semantic segmentation of vertebrate microfossils from computed tomography data using a deep learning approach[J]. JOURNAL OF MICROPALAEONTOLOGY,2021,40(2):163-173. |
APA | Hou, Yemao,Canul-Ku, Mario,Cui, Xindong,Hasimoto-Beltran, Rogelio,&Zhu, Min.(2021).Semantic segmentation of vertebrate microfossils from computed tomography data using a deep learning approach.JOURNAL OF MICROPALAEONTOLOGY,40(2),163-173. |
MLA | Hou, Yemao,et al."Semantic segmentation of vertebrate microfossils from computed tomography data using a deep learning approach".JOURNAL OF MICROPALAEONTOLOGY 40.2(2021):163-173. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
jm-40-163-2021.pdf(3294KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论