IVPP-IR  > 中科院古脊椎所(2000年以后)
Semantic segmentation of vertebrate microfossils from computed tomography data using a deep learning approach
Hou, Yemao1,2,3; Canul-Ku, Mario4; Cui, Xindong2,3,5; Hasimoto-Beltran, Rogelio4; Zhu, Min2,3,5
2021-10-22
发表期刊JOURNAL OF MICROPALAEONTOLOGY
ISSN0262-821X
卷号40期号:2页码:163-173
摘要Vertebrate microfossils have broad applications in evolutionary biology and stratigraphy research areas such as the evolution of hard tissues and stratigraphic correlation. Classification is one of the basic tasks of vertebrate microfossil studies. With the development of techniques for virtual paleontology, vertebrate microfossils can be classified efficiently based on 3D volumes. The semantic segmentation of different fossils and their classes from CT data is a crucial step in the reconstruction of their 3D volumes. Traditional segmentation methods adopt thresholding combined with manual labeling, which is a time-consuming process. Our study proposes a deep-learning-based (DL-based) semantic segmentation method for vertebrate microfossils from CT data. To assess the performance of the method, we conducted extensive experiments on nearly 500 fish microfossils. The results show that the intersection over union (IoU) performance metric arrived at least 94.39 %, meeting the semantic segmentation requirements of paleontologists. We expect that the DL-based method could also be applied to other fossils from CT data with good performance.
DOI10.5194/jm-40-163-2021
关键词[WOS]VIRTUAL WORLD ; IMAGE
收录类别SCI
语种英语
资助项目Chinese Academy of Sciences[XDB26000000] ; Chinese Academy of Sciences[XDA19050102] ; Chinese Academy of Sciences[QYZDJ-SSW-DQC002] ; National Natural Science Foundation of China[42130209]
WOS研究方向Paleontology
WOS类目Paleontology
WOS记录号WOS:000710814100001
出版者COPERNICUS GESELLSCHAFT MBH
引用统计
文献类型期刊论文
条目标识符http://119.78.100.205/handle/311034/19053
专题中科院古脊椎所(2000年以后)
通讯作者Hasimoto-Beltran, Rogelio; Zhu, Min
作者单位1.Xidian Univ, Sch Life Sci & Technol, Xian 710071, Peoples R China
2.Chinese Acad Sci, Key Lab Vertebrate Evolut & Human Origins, Inst Vertebrate Paleontol & Paleoanthropol, Beijing 100044, Peoples R China
3.CAS Ctr Excellence Life & Paleoenvironm, Beijing 100044, Peoples R China
4.Ctr Invest Matemat CIMAT, Guanajuato 36023, Mexico
5.Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Hou, Yemao,Canul-Ku, Mario,Cui, Xindong,et al. Semantic segmentation of vertebrate microfossils from computed tomography data using a deep learning approach[J]. JOURNAL OF MICROPALAEONTOLOGY,2021,40(2):163-173.
APA Hou, Yemao,Canul-Ku, Mario,Cui, Xindong,Hasimoto-Beltran, Rogelio,&Zhu, Min.(2021).Semantic segmentation of vertebrate microfossils from computed tomography data using a deep learning approach.JOURNAL OF MICROPALAEONTOLOGY,40(2),163-173.
MLA Hou, Yemao,et al."Semantic segmentation of vertebrate microfossils from computed tomography data using a deep learning approach".JOURNAL OF MICROPALAEONTOLOGY 40.2(2021):163-173.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
jm-40-163-2021.pdf(3294KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hou, Yemao]的文章
[Canul-Ku, Mario]的文章
[Cui, Xindong]的文章
百度学术
百度学术中相似的文章
[Hou, Yemao]的文章
[Canul-Ku, Mario]的文章
[Cui, Xindong]的文章
必应学术
必应学术中相似的文章
[Hou, Yemao]的文章
[Canul-Ku, Mario]的文章
[Cui, Xindong]的文章
相关权益政策
中科院和国家自然科学...
收藏/分享
文件名: jm-40-163-2021.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。