KMS Institute of Vertebrate Paleontology and Paleoanthropology
Super-resolution reconstruction of vertebrate microfossil computed tomography images based on deep learning | |
Hou, Yemao1; Canul-Ku, Mario2; Cui, Xindong3; Zhu, Min1,4,5 | |
2023-08-02 | |
发表期刊 | X-RAY SPECTROMETRY |
ISSN | 0049-8246 |
期号 | 0页码:10 |
摘要 | Micropaleontologists use the fine structures of microfossils to extract evolutionary information. These structures could not be directly observed with the naked eye. Recently, paleontologists resort to computed tomography (CT) images to mine the information, and pursue higher resolution CT images with in-depth research. Therefore, we propose a new model, weighted super-resolution generative adversarial network (WSRGAN), for the super-resolution reconstruction of CT images. The model proposed herein (WSRGAN) obtained higher LPIPS (0.0757) on the experimental dataset, compared with Bilinear (0.4289), Bicubic (0.4166), EDSR (0.2281), WDSR (0.2640), and SRGAN (0.0815). WSRGAN meets the requirements of paleontologists for reconstructing fish microfossils. We hope that more super-resolution reconstruction methods based on deep learning could be applied to paleontology and achieve better performance. |
关键词 | CT image deep learning microfossil super-resolution reconstruction WSRGAN |
DOI | 10.1002/xrs.3389 |
关键词[WOS] | GENERATIVE ADVERSARIAL NETWORKS ; RESOLUTION |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Strategic Priority Research Program of Chinese Academy of Sciences[XDB26000000] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA19050102] ; National Natural Science Foundation of China[42130209] |
WOS研究方向 | Spectroscopy |
WOS类目 | Spectroscopy |
WOS记录号 | WOS:001039638700001 |
出版者 | WILEY |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.205/handle/311034/22785 |
专题 | 中国科学院古脊椎动物与古人类研究所 |
通讯作者 | Zhu, Min |
作者单位 | 1.Chinese Acad Sci, Inst Vertebrate Paleontol & Paleoanthropol, Key Lab Vertebrate Evolut & Human Origins, Beijing, Peoples R China 2.Virtual Univ State Guanajuato, Guanajuato, Mexico 3.Peking Univ, Sch Earth & Space Sci, Key Lab Orogen Belts & Crustal Evolut, Beijing, Peoples R China 4.Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China 5.Chinese Acad Sci, Inst Vertebrate Paleontol & Paleoanthropol, Key Lab Vertebrate Evolut & Human Origins, Beijing 100044, Peoples R China |
推荐引用方式 GB/T 7714 | Hou, Yemao,Canul-Ku, Mario,Cui, Xindong,et al. Super-resolution reconstruction of vertebrate microfossil computed tomography images based on deep learning[J]. X-RAY SPECTROMETRY,2023(0):10. |
APA | Hou, Yemao,Canul-Ku, Mario,Cui, Xindong,&Zhu, Min.(2023).Super-resolution reconstruction of vertebrate microfossil computed tomography images based on deep learning.X-RAY SPECTROMETRY(0),10. |
MLA | Hou, Yemao,et al."Super-resolution reconstruction of vertebrate microfossil computed tomography images based on deep learning".X-RAY SPECTROMETRY .0(2023):10. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Hou et al 2023.pdf(3138KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论