IVPP-IR
Super-resolution reconstruction of vertebrate microfossil computed tomography images based on deep learning
Hou, Yemao1; Canul-Ku, Mario2; Cui, Xindong3; Zhu, Min1,4,5
2023-08-02
发表期刊X-RAY SPECTROMETRY
ISSN0049-8246
期号0页码:10
摘要Micropaleontologists use the fine structures of microfossils to extract evolutionary information. These structures could not be directly observed with the naked eye. Recently, paleontologists resort to computed tomography (CT) images to mine the information, and pursue higher resolution CT images with in-depth research. Therefore, we propose a new model, weighted super-resolution generative adversarial network (WSRGAN), for the super-resolution reconstruction of CT images. The model proposed herein (WSRGAN) obtained higher LPIPS (0.0757) on the experimental dataset, compared with Bilinear (0.4289), Bicubic (0.4166), EDSR (0.2281), WDSR (0.2640), and SRGAN (0.0815). WSRGAN meets the requirements of paleontologists for reconstructing fish microfossils. We hope that more super-resolution reconstruction methods based on deep learning could be applied to paleontology and achieve better performance.
关键词CT image deep learning microfossil super-resolution reconstruction WSRGAN
DOI10.1002/xrs.3389
关键词[WOS]GENERATIVE ADVERSARIAL NETWORKS ; RESOLUTION
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of Chinese Academy of Sciences[XDB26000000] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA19050102] ; National Natural Science Foundation of China[42130209]
WOS研究方向Spectroscopy
WOS类目Spectroscopy
WOS记录号WOS:001039638700001
出版者WILEY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.205/handle/311034/22785
专题中国科学院古脊椎动物与古人类研究所
通讯作者Zhu, Min
作者单位1.Chinese Acad Sci, Inst Vertebrate Paleontol & Paleoanthropol, Key Lab Vertebrate Evolut & Human Origins, Beijing, Peoples R China
2.Virtual Univ State Guanajuato, Guanajuato, Mexico
3.Peking Univ, Sch Earth & Space Sci, Key Lab Orogen Belts & Crustal Evolut, Beijing, Peoples R China
4.Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China
5.Chinese Acad Sci, Inst Vertebrate Paleontol & Paleoanthropol, Key Lab Vertebrate Evolut & Human Origins, Beijing 100044, Peoples R China
推荐引用方式
GB/T 7714
Hou, Yemao,Canul-Ku, Mario,Cui, Xindong,et al. Super-resolution reconstruction of vertebrate microfossil computed tomography images based on deep learning[J]. X-RAY SPECTROMETRY,2023(0):10.
APA Hou, Yemao,Canul-Ku, Mario,Cui, Xindong,&Zhu, Min.(2023).Super-resolution reconstruction of vertebrate microfossil computed tomography images based on deep learning.X-RAY SPECTROMETRY(0),10.
MLA Hou, Yemao,et al."Super-resolution reconstruction of vertebrate microfossil computed tomography images based on deep learning".X-RAY SPECTROMETRY .0(2023):10.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Hou et al 2023.pdf(3138KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hou, Yemao]的文章
[Canul-Ku, Mario]的文章
[Cui, Xindong]的文章
百度学术
百度学术中相似的文章
[Hou, Yemao]的文章
[Canul-Ku, Mario]的文章
[Cui, Xindong]的文章
必应学术
必应学术中相似的文章
[Hou, Yemao]的文章
[Canul-Ku, Mario]的文章
[Cui, Xindong]的文章
相关权益政策
中科院和国家自然科学...
收藏/分享
文件名: Hou et al 2023.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。